Ta có: \(\frac{2017}{2018}+\frac{2018}{2017}\)
\(=\frac{2017}{2018}+1+\frac{1}{2017}\)\(>\frac{2017}{2018}+1+\frac{1}{2018}\)\(=1+\left(\frac{2017}{2018}+\frac{1}{2018}\right)=1+1=2\)
Vậy: \(\frac{2017}{2018}+\frac{2018}{2017}>2\)
Ta có: \(\frac{2017}{2018}+\frac{2018}{2017}\)
\(=\frac{2017}{2018}+1+\frac{1}{2017}\)\(>\frac{2017}{2018}+1+\frac{1}{2018}\)\(=1+\left(\frac{2017}{2018}+\frac{1}{2018}\right)=1+1=2\)
Vậy: \(\frac{2017}{2018}+\frac{2018}{2017}>2\)
So sánh: \(\dfrac{2017}{2018}+\dfrac{2018}{2017}\) với 2
Cho A=1/2+1/3+1/4+...+1/2019 và B=2018/1+2017/2+...+2/2017+1/2018. So sánh A/B với 1/2018
so sanh
A=2016/2017+2017/2018 va B=2016+2017/2017+2018
So sánh :
20175/20186 với 20176/20185
HELP!
So sánh A và B , biết
\(A=\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}\)
\(B=\dfrac{2017+2018+2019}{2018+2019+2020}\)
1. So sánh
A = \(\dfrac{2015}{2018^3}\) + \(\dfrac{2017}{2018^4}\) và B = \(\dfrac{2017}{2018^3}\) + \(\dfrac{2015}{2018^4}\)
so sánh A và B biết
A=2016/2017+2017/2018+2018/2016 và B=1/3+1/4+...+1/23
bài) Tính
a) 75%+1,2-2+1/5+20180
b) (-4/3+0,75) :2017/2018+(1+1/3-75%) :2017/2018
c) (2018-1/3-2/4-3/5-4/6-...-2018/2020) : (1/15+1/20+1/25+1/30+...1/10100)
bài) Tính
a) 75%+1,2-2+1/5+20180
b) (-4/3+0,75) :2017/2018+(1+1/3-75%) :2017/2018
c) (2018-1/3-2/4-3/5-4/6-...-2018/2020) : (1/15+1/20+1/25+1/30+...1/10100)