1, Ta có : \(10^2+11^2+12^2=100+121+144=365\)
\(13^2+14^2=169+196=365\)
Vì : \(365=365\Rightarrow10^2+11^2+12^2=13^2+14^2\)
Vậy \(10^2+11^2+12^2=13^2+14^2\)
2, \(\left(30+25\right)^2=30^2+25^2=900+625=1525\)
Vì : \(1525< 3025\Rightarrow\left(30+25\right)^2< 3025\)
Vậy \(\left(30+25\right)^2< 3025\)
3, \(37\left(3+7\right)=37.10=370\)
\(3^3+7^3=\left(3+7\right)^3=10^3=1000\)
Vì : \(370< 1000\Rightarrow37\left(3+7\right)< 3^3+7^3\)
Vậy \(37\left(3+7\right)< 3^3+7^3\)
4, \(48\left(4+8\right)=48.12=576\)
\(4^3+8^3=\left(4+8\right)^3=12^3=1728\)
Vì : \(576< 1728\Rightarrow48\left(4+8\right)< 4^3+8^3\)
Vậy \(48\left(4+8\right)< 4^3+8^3\)
5, \(A=2^0+2^1+2^2+...+2^{2010}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2011}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2011}\right)-\left(1+2+2^2+...+2^{2010}\right)\)
\(\Rightarrow A=2^{2011}-1\)
Vì : \(2^{2011}-1=2^{2011}-1\Rightarrow A=B\)
Vậy A = B
6, Ta có : \(A=2009.2011=2009.\left(2010+1\right)\)
\(=2009.2010+2009\)
\(B=2010^2=2010.2010\)
\(=2010.\left(2009+1\right)=2010.2009+2010\)
Vì : \(2010.2009+2009< 2010.2009+2010\Rightarrow A< B\)
Vậy A < B