So sánh 2 số sau :
\(A=\frac{1}{5}+\frac{2}{5^2}+\frac{2}{5^3}+...+\frac{2018}{5^{2018}}\) ; \(B=\frac{2018}{2019}\)
Anh chị giúp em với ạ !!!
Tính hợp lí:
a, 75. ( \(-2\frac{3}{25}+7\frac{2}{75}-5\frac{4}{15}\) )
b, \(45.\left(5\frac{4}{15}-4\frac{7}{9}-1\frac{8}{45}\right)\)
c, \(\frac{-5}{8}+\frac{14}{18}-\frac{3}{8}+\frac{2}{9}-\frac{1}{2006}\)
d, \(\frac{15}{29}-\frac{8}{7}+\frac{16}{14}+\frac{14}{29}-\frac{3}{8}\)
e, \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
a) (\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{132}\)) . x =\(\frac{1}{3}\)
b) (\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)) : x = \(\frac{2}{3}\)
c) (\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)) . x = \(\frac{2}{3}\)
Mik đang cần gấp
1. Cho C = \(\frac{19^{208}+1}{19^{209}+1}\) ; D = \(\frac{19^{209}+1}{19^{210}+1}\). So sánh C và D.
2. Cho A = \(\frac{2004}{2005}+\frac{2005}{2006}\) và B = \(\frac{2004+2005}{2005+2006}\)
Trong hai số A và B, số nào lớn hơn?
\(\left(-\frac{1}{2}\right)+\left(-\frac{1}{9}\right)-\left(-\frac{3}{5}\right)+\frac{1}{2006}-\left(-\frac{2}{7}\right)\)
Tính tỉ số \(\frac{A}{B}\), biết:
A = \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\)
B = \(\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)
Tìm giá trị của biểu thức \(P=\frac{2}{1.3}-\frac{4}{3.5}+\frac{6}{5.7}+\frac{8}{7.9}+...-\frac{96}{95.97}+\frac{98}{97.99}\)
Bài 1: Chứng minh rằng: \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Bài 2: Cho \(n\in N;n>1\). Chứng minh rằng: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{\left(n-1\right)^2}+\frac{1}{n^2}\notin N\)
So sánh: \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) với 2