\(5A=5^2+5^3+....+5^{102}\)
\(\Rightarrow5A-A=4A=\left(5^2+5^3+....+5^{102}\right)-\left(5+5^2+.....+5^{102}\right)\)
\(\Rightarrow4A=5^{102}-5\)
\(\Rightarrow A=\frac{5^{102}-5}{4}\)
Ta có:
\(A=5+5^2+5^3+...+5^{101}\)
\(\Rightarrow5.A=5^2+5^3+5^4+...+5^{102}\)
\(\Rightarrow5.A-A=\left(5^2+5^3+5^4+...+5^{102}\right)-\left(5+5^2+5^3+...+5^{101}\right)\)
\(\Rightarrow4.A=5^{102}-5\)
\(\Rightarrow A=\left(5^{102}-5\right):4\)
\(A=5+5^2+5^3+5^4+....+5^{99}+5^{100}\)
\(5B=5^2+5^3+5^4+5^5+...+5^{501}\)
\(5B-B=5^2+5^3+...+5^{101}-5-5^2-5^3-....-5^{99}-5^{100}\)
\(4B=5^2+5^3+5^4+....+5^{100}+5^{101}-\left(5+5^2+5^3+...+5^{99}+5^{100}\right)\)
\(4B=5^{101}-5\)
\(\Rightarrow B=\left(5^{101}-5\right):4\)