\(\left(2x-3\right)\left(6-2x\right)=0\)
\(2x-3=0\) hoặc \(6-2x=0\)
+TH1
+ \(2x-3=0\)
\(2x=3\)
\(x=3:2\)
\(x=1,5=\dfrac{3}{2}\)
+TH2
+ \(6-2x=0\)
\(2x=6-0\)
\(2x=6\)
\(x=6:2\)
\(x=3\)
vậy \(x=\dfrac{3}{2}\) hoặc \(x=3\)
\(\left(2x-3\right)\left(6-2x\right)=0\)
\(2x-3=0\) hoặc \(6-2x=0\)
+TH1
+ \(2x-3=0\)
\(2x=3\)
\(x=3:2\)
\(x=1,5=\dfrac{3}{2}\)
+TH2
+ \(6-2x=0\)
\(2x=6-0\)
\(2x=6\)
\(x=6:2\)
\(x=3\)
vậy \(x=\dfrac{3}{2}\) hoặc \(x=3\)
\(\frac{12}{16}=\frac{-x}{4}=\frac{21}{y}=\frac{z}{80}\) \((-0,6x-\frac{1}{2}).\frac{3}{4}-\left(-1\right)=\frac{1}{3}\)
\(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)
\(\left(2x-3\right).\left(6-2x\right)=0\)
\(\frac{-2}{3}-\frac{1}{3}\left(2x-5\right)=\frac{3}{2}\)
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
Bài 1 Tìm x ,y biết
a, 2| 2x -3 | =1
b,7,5 -3 | 5 -2x | = -4,5
c, | 3x-4 | + | 3y +5 |=0
Bài 2 Tìm x biết
a, \(\left|\frac{5}{3}x\right|\) =\(\left|-\frac{1}{6}\right|\)
b, \(\left|\frac{3}{4}x-\frac{3}{4}\right|-\frac{3}{4}=\left|-\frac{3}{4}\right|\)
c, \(\left|x+\frac{3}{5}\right|-\left|x-\frac{7}{3}\right|=0\)
Bài 3 Tìm x biết
a,| x |+| x+2 |=0
b,\(\left|x\left(x^2-\frac{5}{4}\right)\right|=x\)
\(\left(x-1\right)⋮\left(x+5\right)\)
\(\left(4x-3\right)⋮\left(2x-1\right)\)
\(\left|4x+12\right|+\left|18-3y\right|=0\)
Bài 1: Tìm x,y biết:
a) \(\left|x-\dfrac{2}{3}\right|+\left|y+x\right|=0\) b) \(\left(x-2y\right)^2+\left|x+\dfrac{1}{6}\right|=0\)
c) \(\left|3x+5y\right|+\left|y-2\right|=0\)
Bài 2: Tìm giá trị nhỏ nhất
A= \(\left|5x+1\right|-\dfrac{3}{8}\) B= \(\left|2-\dfrac{1}{6}x\right|+0,25\)
Bài 3: Tìm giá trị lớn nhất
A= 2018 - \(\left|x+2019\right|\) B= -10 - \(\left|2x-\dfrac{1}{1009}\right|\)
Tìm giá trị của x để A = \(\frac{m\left(5x+15\right)\left(3-x\right)}{2x-6}\) = 0, \(\forall\)x \(\in\) Z.
Tìm giá trị của x để A = \(\frac{m\left(5x+15\right)\left(3-x\right)}{2x-6}\) = 0, \(\forall\)x \(\in\) Z.
Tìm x trong các đẳng thức:
a) \(\left|2x-3\right|=5\)
b) \(\left|2x-1\right|=\left|2x+3\right|\)
c) \(\left|x-1\right|+3x=1\)
d) \(\left|5x-3\right|-x=7\)
1: \(\left(x-2\right)^2-2\cdot\left(x+1\right)^2=\left(2x+1\right)\cdot\left(1-3x\right)-2x\cdot\left(1-x\right)\)
Tìm \(x\) :
\(37+\left(13-\left|2x+7\right|\right)=6^{30}:\left(9^{14}.4^{15}\right)\)