A = \(\dfrac{2017^{2017}+1}{2017^{2018}+1}\)< \(\dfrac{2017^{2017}+2017}{2017^{2018}+2017}\)= \(\dfrac{2017.\left(2017^{2016}+1\right)}{2017.\left(2017^{2017}+1\right)}\) = \(\dfrac{2017^{2016}+1}{2017^{2017}+1}\)= B
Vậy A < B
Ta có: \(2017A=\dfrac{2017^{2018}+2017}{2017^{2018}+1}=1+\dfrac{2016}{2017^{2018}+1}\)
\(2017B=\dfrac{2017^{2017}+2017}{2017^{2017}+1}=1+\dfrac{2016}{2017^{2017}+1}\)
Vì \(\dfrac{2016}{2017^{2018}+1}< \dfrac{2017}{2017^{2017}+1}\Rightarrow1+\dfrac{2016}{2017^{2018}+1}< 1+\dfrac{2016}{2017^{2017}+1}\)
\(\Rightarrow2017A< 2017B\Rightarrow A< B\)
Vậy A < B
Giải
Ta có: A =\(\dfrac{2017^{2017}+1}{2017^{2018}+1}< 1\)
\(\Rightarrow\) A< \(\dfrac{2017^{2017}+1+2016}{2017^{2018}+1+2016}\)=\(\dfrac{2017^{2017}+2017}{2017^{2018}+2017}=\dfrac{2017\left(2017^{2016}+1\right)}{2017\left(2017^{2017}+1\right)}=\dfrac{2017^{2016}+1}{2017^{2017}+1}=B\)Vậy A<B