Ta thấy 1! + 2! = 3 \(⋮\) 3, còn từ 3! trở đi đương nhiên đều chia hết cho 3.
Do đó p2 + q2 + 5895 \(⋮\) 3. Mà 5895 \(⋮\) 3 nên p2 + q2 \(⋮\) 3 (1).
Lại có: p2 và q2 chia cho 3 dư 0 hoặc dư 1 do chúng đều là số chính phương (2).
Từ (1) và (2) \(\Rightarrow\) p2 \(⋮\) 3 và q2 \(⋮\) 3 \(\Rightarrow\) p \(⋮\) 3 và q \(⋮\) 3. Mà p và q là các snt nên p = q = 3 \(\Rightarrow\) 1! + 2! + 3! + ... + n! = 5913.
Vì n! < 5913 nên n < 8 \(\Rightarrow\) n \(\in\) {1; 2; 3; 4; 5; 6; 7}. Thử n với các số đó ta chỉ có n = 7 thỏa mãn.
Vậy n = 7.