a)
\(A=\frac{6^3+3.6^3+3^3}{-13}=\frac{3^3.2^3+3^3.2^2+3^3}{-13}=\frac{3^3\left(8+4+1\right)}{-13}=\frac{27.13}{-13}=-27\)
b)
A=1+5+52+53+...+550
5A=5+52+53+...551
5A-A=(5+52+53+...+551)-(1+5+52+...+550)
4A=551-1
A=\(\frac{5^{51}-1}{4}\)
c)
A=2100-299+298-...+22-2
2A=2101-2100+299-...+23-22
2A+A=(2101-2100+...+23-22)+(2100-299+...+22-2)
3A=2101-2
A=\(\frac{2^{101}-2}{3}\)
b.
\(A=1+5+5^2+5^3+...+5^{49}+5^{50}\)
\(5A=5+5^2+5^3+...+5^{50}+5^{51}\)
\(5A-A=\left(5+5^2+5^3+...+5^{50}+5^{51}\right)-\left(1+5+5^2+..+5^{50}\right)\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
a)
\(A=\frac{6^3+3.6^2+3^3}{13}=\frac{2^3.3^3+3.3^2.2^2+3^3}{13}=\frac{3^3\left(2^3+2^2+1\right)}{13}=\frac{27.13}{13}=27\)
b)
A=1+5+52+53+...+550
5A=5+52+53+...551
5A-A=(5+52+53+...+551)-(1+5+52+...+550)
4A=551-1
A=\(\frac{5^{51}-1}{4}\)
c)
A=2100-299+298-...+22-2
2A=2101-2100+299-...+23-22
2A+A=(2101-2100+...+23-22)+(2100-299+...+22-2)
3A=2101-2
A=\(\frac{2^{101}-2}{3}\)
c.
\(A=2^{100}-2^{99}+2^{98}-....-2^3+2^2-2\)
\(2A=2^{201}-2^{100}+2^{99}-...-2^4+2^3-2^2\)
\(2A+A=\left(2^{101}-2^{100}+...+2^3-2^2\right)+\left(2^{100}-2^{99}+..+2^2-2\right)\) \(3A=2^{201}-2\)
\(A=\frac{2^{201}-2}{3}\)
a.
\(A=\frac{6^3+3.6^2+3^3}{-13}=\frac{216+3.36+27}{-13}=\frac{351}{-13}=-27\)