\(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5051\)
\(\Rightarrow x.101+\left(1+2+...+100\right)=5051\)
\(\Rightarrow x.101+5050=5051\)
\(\Rightarrow x.101=5051-5050\)
\(\Rightarrow x.101=1\)
\(\Rightarrow x=1:101\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
x+ (x+1)+ (x+2) +...+(x+100) = 5051
\(\Rightarrow\) 101x +(1+2+3+...+100) = 5051
\(\Rightarrow\) 101x + [(101. 100): 2] = 5051
\(\Rightarrow\) 101x + 5050 = 5051
\(\Rightarrow\) 101x = 5051-5050
\(\Rightarrow\) 101x = 1
\(\Rightarrow\) x = 1: 101 = \(\dfrac{1}{101}\)