2A=1+1/2+1/4+1/8+.........+1/512
2A‐A=﴾1+1/2+1/4+1/8+....+1/512﴿‐﴾1/2+1/4+1/8+.....+1/1024﴿
A=1‐1/1024 =1023/1024
vậy A=1023/1024
Đặt A=\(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.........+\frac{1}{1024}\) (1)
Ta có: 2A=\(2+1+\frac{1}{2}+\frac{1}{4}+.........+\frac{1}{512}\) (2)
Từ (1) và (2) \(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+\frac{1}{4}+...........+\frac{1}{512}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+..........+\frac{1}{1024}\right)\)
\(\Rightarrow A=2-\frac{1}{1024}\)
\(\Rightarrow A=\frac{2047}{1024}\)
\(\text{Đặt }A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(=\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
=> \(\frac{1}{2}A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{11}}\)
=> \(\frac{1}{2}A-A=\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{11}}\right)-\left(\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
=> \(-\frac{1}{2}A=\frac{1}{2^{11}}-1=\frac{1-2048}{2048}=-\frac{2047}{2048}\)
=> \(A=-\frac{2047}{2048}:\left(-\frac{1}{2}\right)=\frac{2047}{1024}\)
Minh Hiền Trần~ t vs bà cách khác nhau nhưng kết quả lại giống nhau
\(A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)
\(2A=2.\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)\)
\(2A=2+1+\frac{1}{2}+...+\frac{1}{512}\)
Xét \(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{512}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)\)
\(2A-A=2-\frac{1}{1024}\)
\(A=\frac{2048}{1024}-\frac{1}{1024}\)
\(A=\frac{2047}{1024}\)