Nhận xét: n3 - n = n(n2 - 1) = (n - 1).n.(n + 1) => n3 = (n - 1).n.(n + 1) + n. Áp dụng ta có:
13 = 0 + 1
23 = 1.2.3 + 2
33 = 2.3.4 + 3
....
n3 = (n-1).n.(n+1) + n
=> G = (1+ 2+3+...+n) + [ 1.2.3 + 2.3.4 + ...+ (n-1).n.(n+1) ]
Đặt B = 1+ 2+3+...+n
\(\Rightarrow B=\frac{\left(n+1\right).n}{2}\) (1)
Đặt C = 1.2.3 + 2.3.4 + ...+ (n-1).n.(n+1)
4.C = 1.2.3.4 + 2.3.4.(5 - 1) + ...+ (n-1).n.(n+1).(n+2 - n-2)
4.C = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ...+ (n-1).n.(n+1).(n+2) - (n-2).(n-1).n.(n+1) = (n-1).n.(n+1).(n+2)
=> 4.C = (n-1).n.(n+1).(n+2)
=> C = \(\frac{\text{(n-1).n.(n+1).(n+2)}}{4}\) (2)
Từ (1) và (2) \(\Rightarrow G=B+C=\frac{\left(n+1\right).n}{2}\frac{\text{(n-1).n.(n+1).(n+2)}}{4}\)
\(G=1^3+2^3+3^3+...+n^3=\left(1+2+3+...+n\right)^2=\left(\frac{\left(n+1\right).n}{2}\right)^2=\frac{\left(n+1\right)^2.n^2}{4}\)
ta có x3=\(\left[\frac{\left(x+1\right)x}{2}\right]^2\) -\(\left[\frac{\left(x-1\right)x}{2}\right]^2\)
=>13= \(\left[\frac{1.\left(1+1\right)}{2}\right]^2\)-\(\left[\frac{1.\left(1-1\right)}{2}\right]^2\)
.......
n3=\(\left[\frac{\left(n+1\right)n}{2}\right]^2\)-\(\left[\frac{n\left(n-1\right)}{2}\right]^2\)
=> G=13+23+...+.n3=\(\left[\frac{n\left(n+1\right)}{2}\right]^2\)