Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Go!Princess Precure

\(cmr:\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< 2\)

Mới vô
5 tháng 5 2017 lúc 8:23

Gọi \(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\)\(S\)

\(S=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\\ S< \dfrac{1}{1}+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\\ S< 1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ S< 1+1-\dfrac{1}{50}\\ S< 2-\dfrac{1}{50}< 2\)

Vậy \(S< 2\)

Sáng
5 tháng 5 2017 lúc 18:15

Lời giải:

Đặt \(T=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\)

Dễ thấy:

\(\dfrac{1}{1^2}=1\)

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)

\(....\)

\(\dfrac{1}{50^2}=\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

\(\Rightarrow T< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)

\(\Rightarrow T< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow T< 1+1-\dfrac{1}{50}\)

\(\Rightarrow T< 2-\dfrac{1}{50}\)

\(\Rightarrow T< 2\)


Các câu hỏi tương tự
Jenny Phạm
Xem chi tiết
Vi pe
Xem chi tiết
Thiên sứ của tình yêu
Xem chi tiết
Thần Đồng
Xem chi tiết
nguyễn thị huyền
Xem chi tiết
Phan Thanh Bình
Xem chi tiết
Trần Thị Trà My
Xem chi tiết
Trần Văn Thực
Xem chi tiết
Nguyễn Thị Kim Ngân
Xem chi tiết