Ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{\left(a-b\right)^4}{\left(c-d\right)^4}=\left(\frac{a-b}{c-d}\right)^4\left(1\right)\)
\(\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{a^4+b^4}{c^4+d^4}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}\left(đpcm\right)\)