Đại số lớp 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mến Võ Văn

Chướng minh rằng:\(\dfrac{1}{2^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{6^2}\)+...+\(\dfrac{1}{100^2}\)<\(\dfrac{1}{2}\)

Nguyễn Ngọc Linh
26 tháng 4 2017 lúc 17:37

Ta thấy: \(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{2.4}\)

\(\dfrac{1}{6^2}=\dfrac{1}{6.6}< \dfrac{1}{4.6}\)

...............

\(\dfrac{1}{100^2}=\dfrac{1}{100.100}< \dfrac{1}{98.100}\)

=> \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\) < \(\dfrac{1}{2.4}+\dfrac{1}{4.6}+....+\dfrac{1}{98.100}\)

=> \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\) < \(\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)\)

=> \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\) < \(\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{100}\right)=\dfrac{1}{2}.\dfrac{49}{100}\)\(=\dfrac{49}{200}\)

=> \(\dfrac{1}{2^2}\)+ \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\) < \(\dfrac{1}{2^2}+\dfrac{49}{200}=\dfrac{99}{200}\)

do: \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{99}{200}< \dfrac{100}{200}=\dfrac{1}{2}\)

=> \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)

Chúc bn học tốt nha


Các câu hỏi tương tự
Edogawa Conan
Xem chi tiết
Phạm Ngọc Anh
Xem chi tiết
Nguyễn Thị Hải Yến
Xem chi tiết
Lê Hải Yến
Xem chi tiết
Lê Thị Bích
Xem chi tiết
Vũ Thị Vân Anh
Xem chi tiết
Đức Nhật Huỳnh
Xem chi tiết
Trần Thu Hiền
Xem chi tiết
Lê Vũ Anh Thư
Xem chi tiết