Ta có:
B = 10/1.6 + 10/6.11 + 10/11.16 + ... + 10/46.51
B = 2(5/1.6 + 5/6.11 + 5/11.16 + ... + 5/46.51)
B = 2 . (1 - 1/6 + 1/6 - 1/11 + 1/11 - 1/16 + ... + 1/46 - 1/51)
B = 2. (1 - 1/51)
B = 2.50/51
B = 100/51 < 102/51 = 2
=> Ta có đpcm
\(B=\dfrac{10}{1.6}+\dfrac{10}{6.11}+\dfrac{10}{11.16}+.....+\dfrac{10}{46.51}\)
\(B=2\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+.....+\dfrac{1}{46}-\dfrac{1}{51}\right)\)
\(B=2\left(1-\dfrac{1}{51}\right)\)
\(B=2-\dfrac{2}{51}\)
\(B< 2\left(đpcm\right)\)