câu a ) A = 6/12 + 4/12 + 3/12
A = 6+4+3/12
A= 13/12
câub ) bạn dùng máy tính bấm hết ra
câu c ) cũng giống câu b bạn dùng máy tính bấm hết ra
![]()
![]()
![]()
OK mình đã giúp bạn xong rồi nhé !!!
mình bảo bạn bấm máy tính là vì mình lười ko bấm cho bạn thôi ***
câu a ) A = 6/12 + 4/12 + 3/12
A = 6+4+3/12
A= 13/12
câub ) bạn dùng máy tính bấm hết ra
câu c ) cũng giống câu b bạn dùng máy tính bấm hết ra
![]()
![]()
![]()
OK mình đã giúp bạn xong rồi nhé !!!
mình bảo bạn bấm máy tính là vì mình lười ko bấm cho bạn thôi ***
Chứng tỏ:
A=\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{16}\).A ko phải là số tự nhiên
B=\(\dfrac{4}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\).B ko phải là số tự nhiên (a,b,c thuộc N)
BT1: CMR:
a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)
b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)
c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)
d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)
e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)
BT2: Tính tổng
a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)
BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)
CMR: 1 < S < 2
Chứng minh rằng:
1) B =\(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{19}>1\)
2) \(A=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+\dfrac{4}{5^4}+...+\dfrac{500}{5^{500}}<100\)
3) \(C=\dfrac{1}{2^3}+\dfrac{1}{3^3}+\dfrac{1}{4^3}+\dfrac{1}{5^3}+...+\dfrac{1}{500^3}<\dfrac{1}{4}\)
4) \(D=\dfrac{4}{3}+\dfrac{10}{9}+\dfrac{28}{27}+...+\dfrac{3^{98}+1}{3^{98}}<100\)
Làm giúp mình sớm nha! Thanks.
Bài 1: Thực hiện phép tính
a) \(\left(\dfrac{3}{8}+\dfrac{-3}{4}+\dfrac{7}{12}\right):\dfrac{5}{6}+\dfrac{1}{2}\)
b) \(\dfrac{1}{2}+\dfrac{3}{4}-\left(\dfrac{3}{4}-\dfrac{4}{5}\right)\)
c) \(6\dfrac{5}{12}:2\dfrac{3}{4}+11\dfrac{1}{4}.\left(\dfrac{1}{3}\dfrac{1}{5}\right)\)
d)\(\left(\dfrac{7}{8}-\dfrac{3}{4}\right).1\dfrac{1}{3}-\dfrac{2}{7}.\left(3,5\right)^2\)
e)\(\left(\dfrac{3}{5}+0,415-\dfrac{3}{200}\right).2\dfrac{2}{3}.0,25\)
f)\(\dfrac{5}{16}:0,125-\left(2\dfrac{1}{4}-0,6\right).\dfrac{10}{11}\)
g) \(0,25:\left(10,3-9,8\right)-\dfrac{3}{4}\)
h)\(1\dfrac{13}{15}.0,75-\left(\dfrac{11}{20}+20\%\right):\dfrac{7}{3}\)
i)\(\dfrac{\left(\dfrac{1}{2-0,75}\right).\left(0,2-\dfrac{2}{5}\right)}{\dfrac{5}{9}-1\dfrac{1}{12}}\)
k)\(\dfrac{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{1}{14}}{-1-\dfrac{3}{7}+\dfrac{3}{28}}\)
Bài 2: Tính bằng cánh hợp lí
A=\(0,7.2\dfrac{2}{3}.20.0,375.\dfrac{5}{28}\)
B=\(\left(9\dfrac{30303}{80808}+7\dfrac{303030}{484848}\right)+4,03\)
C=\(\left(9,75.21\dfrac{3}{7}+\dfrac{39}{4}.18\dfrac{4}{7}\right).\dfrac{15}{78}\)
D=\(10101.\left(\dfrac{5}{111111}+\dfrac{5}{222222}-\dfrac{4}{3.7.11.13.37}\right)\)
Thu gọn các tổng sau:
a. A=8.5100.(\(\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{100}}\)) +1
b. B=\(\dfrac{4}{3}-\dfrac{4}{3^2}+...-\dfrac{4}{3^{100}}\)
Câu 1: Tìm x biết
a) \(-\dfrac{2}{3}\)\(\left(x-\dfrac{1}{4}\right)\) = \(\dfrac{1}{3}\left(2x-1\right)\) b) \(\dfrac{1}{5}.2^x+\dfrac{1}{3}.2^{x+1}=\dfrac{1}{5}.2^7+\dfrac{1}{3}.2^8\)
Câu 2: a) Cho A = \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}......\dfrac{9999}{10000}\)
So sánh A vs 0,01
b) Chứng tỏ rằng: \(\left[\left(1+2+3+....+n\right)-7\right]⋮̸10\)
CMR:
a) \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)
b) \(\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}>48\)
Bài 1: Tính
\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{309}}{\dfrac{308}{1}+\dfrac{307}{2}+\dfrac{306}{3}+...+\dfrac{1}{308}}\)
BÀi 2: Cho S = \(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{130}\)
Chứng minh \(\dfrac{1}{4}< S< \dfrac{91}{330}\)
BT1: Chứng tỏ rằng: \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}>\dfrac{5}{6}\)
BT2: Điền vào tổng sau số còn thiếu sau đó tính tổng:
\(\dfrac{1}{5}+\dfrac{1}{45}+\dfrac{1}{117}+...+\dfrac{1}{1517}\)