Rút gọn:
(\(\dfrac{2016}{1}+\dfrac{2015}{2}+...+\dfrac{2}{2015}+\dfrac{1}{2016}\)) : (\(\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}\))
Tìm x \(\in\) Z biết:
2) \(\dfrac{1-2x}{2017}+\dfrac{2-2x}{2016}=\dfrac{3-2x}{2015}+\dfrac{4-2x}{2014}\)
Tìm x \(\in\) Z biết:
3) \(\dfrac{1-18x}{2017}+\dfrac{2-18x}{2016}=\dfrac{3-18x}{2015}+\dfrac{4-18x}{2014}\)
Tìm x \(\in\) Z biết:
1) \(\dfrac{1-x}{2017}+\dfrac{2-x}{2016}=\dfrac{3-x}{2015}+\dfrac{4-x}{2014}\)
BT1: Tìm x \(\in\) Z biết:
1) \(\dfrac{1-x}{2017}+\dfrac{2-x}{2016}=\dfrac{3-x}{2015}+\dfrac{4-x}{2014}\)
Cho A = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}\) ; B = \(\dfrac{2015}{1}+\dfrac{2014}{2}+...+\dfrac{2}{2014}+\dfrac{1}{2015}\)
Tính \(\dfrac{A}{B}\)
Tính:
\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2015}}+\dfrac{1}{2^{2016}}\)
Tính :
A=\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2015}}+\dfrac{1}{2^{2016}}\)
Giải típ hộ mik nha !
\(\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{n.\left(n+1\right)}=\dfrac{2016}{2017}=\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{n+1}=\dfrac{2016}{2017}=\dfrac{n+1-2}{2.\left(n+1\right)}=\dfrac{2016}{2017}=\dfrac{n-1}{2.\left(n+1\right)}=\dfrac{2016}{2017}=2017.\left(n-1\right)=2016.2\left(n+1\right)=...\)