\(A=\frac{2x-1}{x+1}=\frac{2\left(x+1\right)-3}{x+1}=2-\frac{3}{x+1}\)
Vậy để \(A\in Z\) thì \(x+1\inƯ\left(3\right)\)
Mà Ư(3)={1;-1;3;-3}
=>x+1={-1;1;3;-3}
+) x+1=-1<=>x=-2(tm)
+)x+1=1<=>x=0(tm)
+)x+1=3<=>x=2(tm)
+)x+1=-3<=>x=-4(tm)
Vậy x={-4;-2;0;2}
Giải( làm lại ):
Để A thuộc Z thì \(2x-1⋮x+1\)
Ta có:
\(2x-1⋮x+1\)
\(\Rightarrow\left(2x+2\right)-3⋮x+1\)
\(\Rightarrow2\left(x+1\right)-3⋮x+1\)
\(\Rightarrow-3⋮x+1\)
\(\Rightarrow x+1\in\left\{\pm1;\pm3\right\}\)
+) \(x+1=1\Rightarrow x=0\)
+) \(x+1=-1\Rightarrow x=-2\)
+) \(x+1=3\Rightarrow x=2\)
+) \(x+1=-3\Rightarrow x=-4\)
Vậy \(x\in\left\{0;-2;2;-4\right\}\)
Giải:
Để A thuộc Z thì \(2x-1⋮x+1\)
Ta có:
\(2x-1⋮x+1\)
\(\Rightarrow\left(2x+2\right)-1⋮x+1\)
\(\Rightarrow2\left(x+1\right)-1⋮x+1\)
\(\Rightarrow-1⋮x+1\)
\(\Rightarrow x+1\in\left\{\pm1\right\}\)
+) \(x+1=1\Rightarrow x=0\)
+) \(x+1=-1\Rightarrow x=-2\)
Vậy x = 0 hoặc x = -2