Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
như quỳnh Lê ngọc

Cho A = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}\) ; B = \(\dfrac{2015}{1}+\dfrac{2014}{2}+...+\dfrac{2}{2014}+\dfrac{1}{2015}\)

Tính \(\dfrac{A}{B}\)

Nguyễn Hải Dương
14 tháng 4 2017 lúc 20:44

Ta có :

B = \(\dfrac{2015}{1}+\dfrac{2014}{2}+\dfrac{2013}{3}+...+\dfrac{2}{2014}+\dfrac{1}{2015}\) => B = \(\left(1+\dfrac{2014}{2}\right)+\left(1+\dfrac{2013}{3}\right)+...+\left(1+\dfrac{2}{2014}\right)+\left(1+\dfrac{1}{2015}\right)+1\) => B = \(\dfrac{2016}{2}+\dfrac{2016}{3}+...+\dfrac{2016}{2014}+\dfrac{2016}{2015}+\dfrac{2016}{2016}\) => B = \(2016\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)\) Ta có :

\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}}{2016\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)}\)

=> \(\dfrac{A}{B}=\dfrac{1}{2016}\)

Vậy \(\dfrac{A}{B}=\dfrac{1}{2016}\)