Đề sai à???
Đáng ra phải là \(\dfrac{A}{B}\) chứ???
Với cả nếu muốn CM biểu thức ko là số tự nhiên thì chỉ cần có 1 biểu thức thui chứ nhỉ, cần j 2???
Đề sai à???
Đáng ra phải là \(\dfrac{A}{B}\) chứ???
Với cả nếu muốn CM biểu thức ko là số tự nhiên thì chỉ cần có 1 biểu thức thui chứ nhỉ, cần j 2???
Cho S = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{48}+\dfrac{1}{49}+\dfrac{1}{50}\)và P = \(\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\). Tính \(\dfrac{S}{P}\)
Cho S=\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\)
và P=\(\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
TÍNH S/P
1 CM
a, \(\left(\dfrac{1}{1}+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{2n-1}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2n}\right)=\dfrac{1}{n+1}+\dfrac{1}{n+2}+...+\dfrac{1}{2n}\)( n∈Z)
b, \(\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}=\dfrac{99}{50}-\dfrac{97}{49}+...+\dfrac{7}{4}-\dfrac{5}{3}+\dfrac{3}{2}\)
S=\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+...+\(\dfrac{1}{49}\)+\(\dfrac{1}{50}\)
P=\(\dfrac{1}{49}\)+\(\dfrac{2}{48}\)+\(\dfrac{3}{47}\)+...+\(\dfrac{48}{2}\)+\(\dfrac{49}{1}\)
Tính \(\dfrac{S}{P}\)
Cho \(A=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2019}\)
Chứng minh A ko phải là số tự nhiên
Các bạn giúp với :<
Bài 1:
a, CMR: A = \(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{21}{10^2.11^2}< 1\)
b, Cho B = \(\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+\dfrac{24}{25}+...+\dfrac{2499}{2500}.\) CMR: B không phải là số nguyên.
c, So sánh: C = \(\dfrac{2}{2^1}+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{2021}{2^{2020}}\) với 3.
Bài 1: tính
Cho A= \(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+........+\dfrac{1}{60}>\dfrac{7}{12}\)
B=\(\dfrac{1}{3^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}+.....+\dfrac{1}{50^2}\)
CMR B > \(\dfrac{1}{4}\); B < \(\dfrac{4}{9}\)
C = \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}.\dfrac{7}{8}...........\dfrac{79}{80}\)<\(\dfrac{1}{9}\)
Cho A= \(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2^{100}-1}\). CMR 50<A<100
a, Cho b là số tự nhiên, b>1. Chứng minh rằng: \(\dfrac{1}{b}-\dfrac{1}{b+1}< \dfrac{1}{b^2}< \dfrac{1}{b-1}-\dfrac{1}{b}\)
b, Áp dụng phần a: Cho S\(=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\). Chứng minh rằng: \(\dfrac{2}{5}< S< \dfrac{8}{9}\)