Câu I:
1.\(\dfrac{x}{4}=\dfrac{y}{7}\Rightarrow x=4k;y=7k\)
\(\Rightarrow xy=4k.7k=28k^2=112\)
\(\Leftrightarrow k=\pm2\)
*Với k=-2\(\Rightarrow x=-8;y=-14\)
*Với k=2\(\Rightarrow x=8;y=14\)
Vậy (x;y)=(-8;-14);(8;14).
2.Giả sử \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{15}\) với a,b,c khác 0
Đặt a=3k;b=5k;c=15k
\(\Rightarrow\dfrac{ab+ac}{2}=\dfrac{a\left(b+c\right)}{2}=\dfrac{3k.20k}{2}=30k^2\)
\(\dfrac{bc+ba}{3}=\dfrac{b\left(a+c\right)}{3}=\dfrac{5k.18k}{3}=30k^2\)
\(\dfrac{ca+cb}{4}=\dfrac{c\left(a+b\right)}{4}=\dfrac{15k.8k}{4}=30k^2\)
\(\Rightarrow\dfrac{ab+ac}{2}=\dfrac{bc+ba}{3}=\dfrac{ca+cb}{4}=30k^2\)
Vậy \(\dfrac{ab+ac}{2}=\dfrac{bc+ba}{3}=\dfrac{ca+cb}{4}\) thì \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{15}\)
3. Có : \(P=\left|2013-x\right|+\left|2014-x\right|\)\(=\left|2013-x\right|+\left|x-1014\right|\)\(\ge\left|2013-x+x-2014\right|=\left|-1\right|=1\)
Vậy Pmin=1\(\Leftrightarrow\left(2013-x\right)\left(x-2014\right)\ge0\)
\(\Leftrightarrow-x^2+4027x-4054182\ge0\)
\(\Leftrightarrow2013\le x\le2014\)
Câu III:
2.Có:\(A=\dfrac{x_1^6}{x_2^6}+\dfrac{x_2^6}{x_1^6}\)\(=\dfrac{x_1^{12}+x_2^{12}}{x_1^6x_2^6}\)
Theo hệ thức Vi-et:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2}{2}=1\\x_1x_2=\dfrac{-1}{2}\end{matrix}\right.\)
Có: \(x_1^{12}+x_2^{12}=\left(x_1^6+x^6_2\right)^2-2x_1^6x_2^6\)\(=\left[\left(x_1^3+x_2^3\right)^2-2x_1^3x_2^3\right]^2-2x_1^6x_2^6\)
\(=\left\{\left[\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\right]^2-2x_1^3x_2^3\right\}^2-2x_1^6x_2^6\)
\(=\left\{\left[1-3.\dfrac{-1}{2}.1\right]^2-2.\left(\dfrac{-1}{2}\right)^3\right\}^2-2.\dfrac{1}{2^6}\)
\(=\left\{\dfrac{25}{4}+\dfrac{1}{4}\right\}^2-\dfrac{1}{32}\)=\(\dfrac{1351}{32}\)
\(\Rightarrow A=\dfrac{\dfrac{1351}{32}}{\dfrac{1}{64}}\)\(=2702\)
Câu II:
1. b)\(\dfrac{x^2+4x+6}{x+2}+\dfrac{x^2+16x+72}{x+8}=\dfrac{x^2+8x+20}{x+4}+\dfrac{x^2+12x+42}{x+6}\)\(\left(x\ne-2;-4;-6;-8\right)\)
\(\Leftrightarrow x+2+\dfrac{2}{x+2}+x+8+\dfrac{8}{x+8}=x+4+\dfrac{4}{x+4}+x+6+\dfrac{6}{x+6}\)
\(\Leftrightarrow\dfrac{2}{x+2}+\dfrac{8}{x+8}=\dfrac{4}{x+4}+\dfrac{6}{x+6}\)
\(\Leftrightarrow\left(\dfrac{2}{x+2}-1\right)+\left(\dfrac{8}{x+8}-1\right)=\left(\dfrac{4}{x+4}-1\right)+\left(\dfrac{6}{x+6}-1\right)\)
\(\Leftrightarrow\dfrac{x}{x+2}+\dfrac{x}{x+8}=\dfrac{x}{x+4}+\dfrac{x}{x+6}\)
\(\Leftrightarrow x\left(\dfrac{1}{x+2}+\dfrac{1}{x+8}-\dfrac{1}{x+4}-\dfrac{1}{x+6}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\\dfrac{1}{x+2}+\dfrac{1}{x+8}-\dfrac{1}{x+4}-\dfrac{1}{x+6}=0\end{matrix}\right.\)
Với \(\dfrac{1}{x+2}+\dfrac{1}{x+8}-\left(\dfrac{1}{x+4}+\dfrac{1}{x+6}\right)=0\)
\(\Leftrightarrow\left(2x+10\right)\left(\dfrac{1}{\left(x+2\right)\left(x+8\right)}-\dfrac{1}{\left(x+4\right)\left(x+6\right)}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\left(TM\right)\\\dfrac{1}{\left(x+2\right)\left(x+8\right)}-\dfrac{1}{\left(x+4\right)\left(x+6\right)}=0\end{matrix}\right.\)
Với \(\frac{1}{\left(x+2\right)\left(x+8\right)}-\frac{1}{\left(x+4\right)\left(x+6\right)}=0\)