\(\dfrac{1.2}{3.2}+\dfrac{1.2}{6.2}+.....+\dfrac{1.2}{2\left(x+1\right):2.2}\)=\(\dfrac{1998}{2000}\)
\(\dfrac{2}{6}+\dfrac{2}{12}+.....+\dfrac{2}{x\left(x+1\right)}\)=\(\dfrac{1998}{2000}\)
\(2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{1998}{2000}\)
\(2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{1998}{2000}\)
\(\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1998}{2000}:2\)
\(\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{999}{2000}\)
\(\dfrac{1}{x+1}=\dfrac{1}{2000}\)
suy ra x+1=2000
suy ra x=2000-1=1999