a,
\(\dfrac{13}{17}=1-\dfrac{4}{17}\\ \dfrac{25}{29}=1-\dfrac{4}{29}\\ \dfrac{4}{17}>\dfrac{4}{29}\Rightarrow1-\dfrac{4}{17}< 1-\dfrac{4}{29}\Leftrightarrow\dfrac{13}{17}< \dfrac{25}{29}\)
Vậy \(\dfrac{13}{17}< \dfrac{25}{29}\)
b,
\(\dfrac{59}{101}>\dfrac{56}{101}>\dfrac{56}{105}\\ \Rightarrow\dfrac{59}{101}>\dfrac{56}{105}\)
Vậy \(\dfrac{59}{101}>\dfrac{56}{105}\)
c,
\(\dfrac{14}{55}>\dfrac{14}{56}=\dfrac{1}{4}=\dfrac{20}{80}>\dfrac{20}{83}\)
Vậy \(\dfrac{14}{55}>\dfrac{20}{83}\)
d,
\(\dfrac{13}{57}< \dfrac{13}{39}=\dfrac{1}{3}=\dfrac{29}{87}< \dfrac{29}{73}\)
Vậy \(\dfrac{13}{57}< \dfrac{29}{73}\)
e,
\(\dfrac{17}{21}=\dfrac{17\cdot101}{21\cdot101}=\dfrac{1717}{2121}\)
Vậy \(\dfrac{17}{21}=\dfrac{1717}{2121}\)