a) \(1-2+3-4+...+213-214\)
\(=\left(1-2\right)+\left(3-4\right)+...+\left(213-214\right)\)(có 107 cặp)
\(=\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)
\(=-107\)
b) \(\left|x-17\right|+13=25\)
\(\Rightarrow\left|x-17\right|=25-13\)
\(\Rightarrow\left|x-17\right|=12\)
\(\Rightarrow\left[{}\begin{matrix}x-17=12\\17-x=12\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=12+17\\-x=12-17\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=29\\-x=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=29\\x=5\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=29\\x=5\end{matrix}\right.\)
\(1-2+3-4+5-6+...+213-214\)
\(=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(213-214\right)\)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)
\(=\left(-1\right)\left[\left(\dfrac{214-1}{1}+1\right):2\right]\)
\(=-1.107\)
\(=-107\)
\(\left|x-17\right|+13=25\)
\(\Rightarrow\left|x-17\right|=12\)
\(\Rightarrow\left[{}\begin{matrix}x-17=12\\x-17=-12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=29\\x=5\end{matrix}\right.\)