Bài 1: Tính tổng 50 số hạng đầu tiên của dãy:
a)\(\dfrac{2}{3\times4}\);\(\dfrac{2}{4\times5}\);\(\dfrac{2}{5\times6}\);...
b)\(\dfrac{1}{6}\);\(\dfrac{1}{12}\);\(\dfrac{1}{20}\);\(\dfrac{1}{30}\);...
c)\(\dfrac{3}{3}\);\(\dfrac{3}{15}\);\(\dfrac{3}{35}\);\(\dfrac{3}{63}\);...
Ai biết làm bài này giúp mik ghi cách làm ra nhé !
mik đang cần gấp
Cảm ơn nhiều
a)
\(A=\dfrac{2}{3.4}+\dfrac{2}{4.5}+\dfrac{2}{5.6}+...+\dfrac{2}{52.53}\\ A=2\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{53.54}\right)\\ A=2.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{52}-\dfrac{1}{53}\right)\\ A=2\left(\dfrac{1}{3}-\dfrac{1}{53}\right)\\ A=\dfrac{100}{3.53}=\dfrac{100}{159}\)
b)
\(B=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{2652}\\ B=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{51.52}\\ B=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{51}-\dfrac{1}{52}\\ B=\dfrac{1}{2}-\dfrac{1}{52}=\dfrac{50}{104}=\dfrac{25}{52}\)
câu c tương tự câu a