Đại số lớp 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Quỳnh Anh

Bài 1:

a, Chứng tỏ rằng với n thuộc N, n khác 0 thì:

\(\dfrac{1}{n\left(n+1\right)}\)=\(\dfrac{1}{n}\) - \(\dfrac{1}{n+1}\)

b, Áp dụng kết quả ở câu a để tính nhanh:

A=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.....+\(\dfrac{1}{9.10}\)

Bài 2: Tính nhanh:

C=\(\dfrac{1}{2}\)+\(\dfrac{1}{14}\)+\(\dfrac{1}{35}\)+\(\dfrac{1}{65}\)+\(\dfrac{1}{104}\)+\(\dfrac{1}{152}\)

Bài 3:

a, Cho 2 phân số \(\dfrac{1}{n}\)\(\dfrac{1}{n+1}\) (n thuộc Z, n > 0). Chứng tỏ rằng tích của 2 phân số này bằng hiệu của chúng.

b, Áp dụng kết quả trên để tính giá trị các biểu thức sau:

A=\(\dfrac{1}{2}\) . \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) . \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) . \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) . \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) . \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) . \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\) . \(\dfrac{1}{9}\)

B=\(\dfrac{1}{30}\)+\(\dfrac{1}{42}\)+\(\dfrac{1}{56}\)+\(\dfrac{1}{72}\)+\(\dfrac{1}{90}\)+\(\dfrac{1}{110}\)+\(\dfrac{1}{132}\)

Các bạn giúp mk với nha!vui

Hoang Hung Quan
18 tháng 3 2017 lúc 8:53

Bài 1:

a) \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)

Quy đồng \(VP\) ta được:

\(VP=\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(\Rightarrow VP=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}\)

\(\Rightarrow VP=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)

\(\Rightarrow VP=VT\)

Vậy \(\forall n\in Z,n>0\Rightarrow\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\) (Đpcm)

b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}\)

\(=\dfrac{9}{10}\)

Trịnh Ngọc Hân
18 tháng 3 2017 lúc 20:27

Bài 3:

a) \(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{1+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)

b) A=\(\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{5}+\dfrac{1}{5}.\dfrac{1}{6}+\dfrac{1}{6}.\dfrac{1}{7}+\dfrac{1}{7}.\dfrac{1}{8}+\dfrac{1}{8}.\dfrac{1}{9}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\)

\(=\dfrac{1}{2}-\dfrac{1}{9}\)

\(=\dfrac{7}{18}\)

B=\(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)

\(=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)

\(=\dfrac{1}{5}-\dfrac{1}{12}\)

\(=\dfrac{7}{60}\)

Đông Giang
18 tháng 3 2017 lúc 7:23

B=1 phần 5 trừ 1 phần 12

Phạm Thanh Hằng
28 tháng 4 2017 lúc 11:28

Bài 1:

\(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{\left(n+1\right)n}\)

\(=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)

b)A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(A=1\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)

\(\Rightarrow A=1\left(1-\dfrac{1}{10}\right)\)

A=\(1\left(\dfrac{10}{10}-\dfrac{1}{10}\right)\)

\(\Rightarrow A=\dfrac{9}{10}\)

Vậy A=\(\dfrac{9}{10}\)

~ chúc bạn học tốt~vui


Các câu hỏi tương tự
Mai Ngọc Trâm
Xem chi tiết
Anime Miku Cherry Mizuki...
Xem chi tiết
Đức Nhật Huỳnh
Xem chi tiết
Lê Hải Yến
Xem chi tiết
Đức Nhật Huỳnh
Xem chi tiết
Phạm Ngọc Anh
Xem chi tiết
Nguyễn Đức Toàn
Xem chi tiết
Chi Quỳnh
Xem chi tiết
Shiku Ramen
Xem chi tiết