\(B=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)
\(7B=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\)
\(7B-B=\left(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\right)\)
\(6B=1-\frac{1}{7^{100}}\)
\(B=\frac{1-\frac{1}{7^{100}}}{6}\)
\(B=\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{100}}\)
\(\Rightarrow7B=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\)
\(\Rightarrow7B-B=\left(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{100}}\right)\)
\(\Rightarrow6B=1-\frac{1}{7^{99}}\)
\(\Rightarrow B=\left(1-\frac{1}{7^{99}}\right):6\)
\(\Leftrightarrow7B=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\)
\(\Leftrightarrow7B-B=1-\frac{1}{7^{100}}\)
\(\Leftrightarrow B=\frac{1-\frac{1}{7^{100}}}{6}\)