_ Dạ đừng ai tk e vỳ cái nk trên kia là của e , e đăng cho đứa pn thoy _
Bài giải
\(A=\dfrac{2017^{17}+1}{2017^{16}+1}=\dfrac{2017^{17}+2017-2016}{2017^{16}+1}=\dfrac{\left(2017.2017^{16}\right)+\left(2017.1\right)-2016}{2017^{16}+1}=\dfrac{2017.\left(2017^{16}+1\right)}{\left(2017^{16}+1\right)}=\dfrac{2017.2017^{16}+1}{2017^{16}+1}-\dfrac{2016}{2017^{16}+1}=2017-\dfrac{2016}{2017^{16}+1}\)
\(B=\dfrac{2017^{18}+1}{2017^{17}+1}=\dfrac{2017^{18}+2017-2016}{2017^{17}+1}=\dfrac{\left(2017.2017^{17}+2017.1\right)-2016}{2017^{17}+1}=\dfrac{2017.\left(2017^{17}+1\right)-2016}{2017^{17}+1}=\dfrac{2017.\left(2017^{17}+1\right)-2016}{2017^{17}+1}=\dfrac{2017.\left(2017^{17}+1\right)}{2017^{17}+1}-\dfrac{2016}{2017^{17}+1}=2017-\dfrac{2016}{2017^{17}+1}\)
Vì \(\dfrac{2016}{2017^{16}+1}>\dfrac{2016}{2017^{17}+1}\)
\(\Rightarrow2017-\dfrac{2016}{2017^{16}+1}< 2017-\dfrac{2016}{2017^{17}+1}\)
\(\Rightarrow A< B\)
nhân với 1/2017 vào A và B rút gọn r` so sánh. Do ko nhờ t làm t gợi ý thôi