\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{50}}\)
\(\Rightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{49}}\)
\(\Rightarrow3A-A=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{49}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{50}}\right)\)
\(\Rightarrow2A=1-\dfrac{1}{3^{50}}\)
\(\Rightarrow A=\dfrac{1-\dfrac{1}{3^{50}}}{2}\)