a)Ta có:
\(\left\{{}\begin{matrix}\left|x+3\right|\ge0\\\left|x+9\right|\ge0\\\left|x+5\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x+3\right|+\left|x+9\right|+\left|x+5\right|\ge0\)
\(\Rightarrow4x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=x+3+x+9+x+5=3x+17=4x\)
\(\Rightarrow17=4x-3x\Rightarrow x=17\)
b)Tương tự câu a, ta chứng minh được \(x\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+...+\left|x+98\right|+\left|x+99\right|=x+1+x+2+...+x+98+x+99=99x+4950=100x\)
\(\Rightarrow4950=100x-99x\Rightarrow x=4950\)
c)Ta có:
\(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|=4=\left|x-1+5-x\right|\)
\(\Rightarrow1\le x\le5\Rightarrow x\in\left\{1;2;3;4;5\right\}\)