\(3\frac{1}{3}x+16\frac{3}{4}=-13,25\\ \frac{10}{3}x+\frac{67}{4}=\frac{-53}{4}\\ \frac{10}{3}x=\frac{-53}{4}-\frac{67}{4}\\ \frac{10}{3}x=-30\\ x=\left(-30\right):\frac{10}{3}\\ x=\left(-30\right)\cdot\frac{3}{10}\\ x=-9\)Vậy x = -9
\(3\frac{1}{3}x+16\frac{3}{4}=-13,25\\ \frac{10}{3}x+\frac{67}{4}=\frac{-53}{4}\\ \frac{10}{3}x=\frac{-53}{4}-\frac{67}{4}\\ \frac{10}{3}x=-30\\ x=\left(-30\right):\frac{10}{3}\\ x=\left(-30\right)\cdot\frac{3}{10}\\ x=-9\)Vậy x = -9
3\(\dfrac{1}{3}\) x- 16\(\dfrac{3}{4}\) = -13,25
1.Thực hiện phép tính:
a) 45 : \(2\frac{4}{7}+50\)o/o - 1,25
b) \(4\frac{2}{5}.0,5-1\frac{3}{7}.14\)o/o + (-0,8)
c) \(1\frac{3}{8}+\frac{1}{8}:\)(75o/o - \(\frac{1}{2}\)) - 25o/o . \(\frac{1}{2}\)
d) 75o/o + 18 + 1,25 . \(\frac{4}{5}-18\frac{3}{4}\)
2.THPT:
A = \(\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
B = \(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{93.95}\)
C = \(\left(1-\frac{1000}{2017}\right).\left(1-\frac{1001}{2017}\right)...\left(1-\frac{2017}{2018}\right)\)
D = \(\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
3. Tìm x:
a)\(\left(2\frac{4}{5}x-50\right):\frac{2}{3}=51\)
b) \(3\frac{1}{3}x+16\frac{3}{4}=-13,25\)
c) \(\frac{2}{3}x-\frac{5}{6}x=\frac{11}{24}\)
d) x + \(\frac{2}{5}x=\frac{-14}{55}\)
e) \(\frac{2}{5}x-x=\frac{\left(-2018\right)^0}{5^2}\)
f) x + \(\left(x+\frac{2}{7}\right)+\frac{-5}{11}=\frac{4}{11}\)
Help me!!!!!!
Chứng Minh Rằng
a) \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+.....+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Chứng minh rằng: a)\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b)\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Nhanh lên nhé! Mk đang cần gấp.
\(\frac{12}{16}=\frac{-x}{4}=\frac{21}{y}=\frac{z}{80}\) \((-0,6x-\frac{1}{2}).\frac{3}{4}-\left(-1\right)=\frac{1}{3}\)
\(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)
\(\left(2x-3\right).\left(6-2x\right)=0\)
\(\frac{-2}{3}-\frac{1}{3}\left(2x-5\right)=\frac{3}{2}\)
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
Cho M =\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\) .Hãy chứng minh M<\(\frac{3}{16}\)
Câu 2 Chứng minh rằng :
\(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}< \frac{1}{50}\)
Bài 1: Chứng minh rằng: \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Bài 2: Cho \(n\in N;n>1\). Chứng minh rằng: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{\left(n-1\right)^2}+\frac{1}{n^2}\notin N\)
\(a,\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{54}{24}\cdot\frac{56}{21}\)
\(b,5\cdot\frac{7}{5}\) \(c,\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}\)
\(d,4\cdot11\cdot\frac{3}{4}\cdot\frac{9}{121}\)
\(e,\frac{3}{4}\cdot\frac{16}{9}-\frac{7}{5}:\frac{-21}{20}\)
\(g,2\frac{1}{3}-\frac{1}{3}\cdot\left[\frac{-3}{2}+\left(\frac{2}{3}+0,4\cdot5\right)\right]\)
Bài 1: Cho \(A=\frac{196}{197}+\frac{197}{198}\) và \(B=\frac{196+197}{197+198}\). Trong 2 số A và B, số nào lớn hơn?
Bài 2: Tính nhanh: \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+...+16\right)\)