a) |x+2| = 0
⇒ x+2 = 0
x = 0 - 2
x =-2
Vậy : x =-2
\(b,\left|x-5\right|=\left|-7\right|\\ \left|x-5\right|=7\\ \Rightarrow\left[{}\begin{matrix}x-5=7\\x-5=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-2\end{matrix}\right.\\ Vậy...\\ c,\left|x-3\right|=\left|5\right|+\left|-7\right|\\ \left|x-3\right|=5+7\\ \left|x-3\right|=12\\ \Rightarrow\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-9\end{matrix}\right.\\Vậy...\\ d,\left(7-x\right)-\left(25+7\right)=-25\\ 7-x-32=-25\\ 7-x=-25+32\\ 7-x=7\\ x=7-7\\ x=0\\ Vậy...\\ e,\left|x-3\right|=7-\left(-2\right)\\ \left|x-3\right|=9\\ \Rightarrow\left[{}\begin{matrix}x-3=9\\x-3=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-6\end{matrix}\right.\\ Vậy...\)