`(-2/3)^2018*(3/2)^2020`
`=(2/3)^2018*(3/2)^2018*(3/2)^2`
`=(2/3*3/2)^2018*9/4`
`=1*9/4=9/4`
\(\left(\dfrac{-2}{3}\right)^{2018}\).\(\left(\dfrac{3}{2}\right)^{2020}\)=\(\left(\dfrac{-2}{3}\right)^{2018}\).\(\left(\dfrac{3}{2}\right)^{2018}\).\(\left(\dfrac{3}{2}\right)^2\)=\(\left(\dfrac{-2}{3}.\dfrac{3}{2}\right)^{2018}\).\(\dfrac{9}{4}\)=-1.\(\dfrac{9}{4}\)=\(\dfrac{-9}{4}\)
Tham khảo:
-\(\dfrac{2}{3}\)2018\(\times\)\(\dfrac{3}{2}\)2020
=-\(\dfrac{2^{2018}\times3^{2020}}{3^{2018}\times2^{2020}}\)
=-\(\dfrac{3^2}{2^2}\)=-\(\dfrac{9}{4}\)
Chúc bạn học tốt.
Giải:
\(\left(\dfrac{-2}{3}\right)^{2018}.\left(\dfrac{3}{2}\right)^{2020}\)
\(=\left(\dfrac{-2}{3}\right)^{2018}.\left(\dfrac{3}{2}\right)^{2020}\)
\(=\left(\dfrac{-2}{3}\right)^{2018}.\left(\dfrac{3}{2}\right)^{2018}.\left(\dfrac{3}{2}\right)^2\)
\(=\left(\dfrac{-2}{3}.\dfrac{3}{2}\right)^{2018}.\dfrac{9}{4}\)
\(=\left(-1\right)^{2018}.\dfrac{9}{4}\)
\(=1.\dfrac{9}{4}\)
\(=\dfrac{9}{4}\)
Chúc bạn học tốt!