1/.\(\dfrac{1}{1}.\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{5}\)
2/.\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{10100}\)
3/.A = \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
4/.A = \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)
tính bằng cách thuận tiện nhất ( làm nhanh trước 5h nha , nếu ai làm được thì cho 100 tick , thật đó và trình bày cách diễn giải nha )
2/ = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) +......+\(\dfrac{1}{100.101}\)
= 1-\(\dfrac{1}{2}\) +\(\dfrac{1}{2}\) -\(\dfrac{1}{3}\)+.........+\(\dfrac{1}{100}\)-\(\dfrac{1}{101}\)
=1-\(\dfrac{1}{101}\)=...........
mk làm vậy thôi nha
thông cảm
=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{4.5}\)=\(1-\dfrac{1}{2}+....+\dfrac{1}{4}-\dfrac{1}{5}\)
=1-\(\dfrac{1}{5}=\dfrac{4}{5}\)
tương tự
\(\dfrac{1}{1}\).\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\).\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\).\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\).\(\dfrac{1}{5}\)
\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+\(\dfrac{1}{4.5}\)
(\(\dfrac{1}{1}\)-\(\dfrac{1}{2}\))+(\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\))+(\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\))+(\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\))
1-(\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\))-(\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\))-(\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\))-\(\dfrac{1}{5}\)
1-\(\dfrac{1}{5}\)
\(\dfrac{4}{5}\)
1/ \(\dfrac{1}{1}.\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{5}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\)
\(=1-\dfrac{1}{5}\)
\(=\dfrac{4}{5}\)
2/ \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{10100}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{100.101}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}\)
\(=\dfrac{100}{101}\)
3/ \(A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
\(A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(A=1-\dfrac{1}{101}\)
\(A=1-\dfrac{100}{101}\)
4/ \(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)
\(A=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\right)\)
\(A=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(A=\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)\)
\(A=\dfrac{1}{2}.\dfrac{100}{101}\)
\(A=\dfrac{50}{101}\)
Nếu bạn không hiểu thì ta có công thức là:
\(\dfrac{m}{b.\left(b+m\right)=}=\dfrac{1}{b}-\dfrac{1}{b+m}\)