Violympic toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
mr. killer

1.8,cho A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\).CMR:\(\dfrac{2}{5}< A< \dfrac{8}{9}\)

1.9,cho A=\(\dfrac{2}{3}+\dfrac{2}{5^2}+\dfrac{2}{7^2}+...+\dfrac{2}{2007^2}.CMR:A< \dfrac{1007}{2008}\)

Nguyen Thi Huyen
1 tháng 3 2018 lúc 23:54

Câu 1.8: Giải

*Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)

...

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{9.10}\)

\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(A>\dfrac{1}{2}-\dfrac{1}{10}\)

\(A>\dfrac{2}{5}\) (1)

*Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)

...

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{8.9}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

\(A< 1-\dfrac{1}{9}\)

\(A< \dfrac{8}{9}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\)


Các câu hỏi tương tự
Nguyễn Trọng Cường
Xem chi tiết
Spade Z
Xem chi tiết
Đinh Quốc Vĩ
Xem chi tiết
Phương Anh Ribi
Xem chi tiết
Noo Phước Thịnh
Xem chi tiết
Nguyễn Xuân Nghĩa (Xin...
Xem chi tiết
Ly Hoàng
Xem chi tiết
Alan Walker
Xem chi tiết
Trần Thị Hoàn
Xem chi tiết