Để A > 1 thì \(\dfrac{x+3}{x+7}>1\)
\(\Leftrightarrow\dfrac{x+3}{x-7}-1>0\)
\(\Leftrightarrow\dfrac{x+3-\left(x+7\right)}{x+7}>0\)
\(\Leftrightarrow\dfrac{x+3-x-7}{x+7}>0\)
\(\Leftrightarrow\dfrac{-4}{x+7}>0\)
\(\Leftrightarrow-\dfrac{4}{x+7}>0\)
\(\Leftrightarrow\dfrac{4}{x+7}< 0\)
\(\Leftrightarrow x+7< 0\)
Vậy \(x< 7\)
ta có \(A=\dfrac{x+3}{x+7}>1\Leftrightarrow\dfrac{x+3}{x+7}-1>0\Leftrightarrow\dfrac{x+3-x-7}{x+7}>0\)
\(\Leftrightarrow\dfrac{-4}{x+7}>0\)
ta có \(-4< 0\Rightarrow\dfrac{-4}{x+7}>0\Leftrightarrow x+7< 0\Leftrightarrow x< -7\)
vậy \(x< -7\)