Violympic toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Uni5 Forever

1) Tính: \(\frac{3}{2^2}\). \(\frac{8}{3^2}\). \(\frac{15}{4^2}\). ...... .\(\frac{899}{30^2}\)

2) cho A= \(\frac{3}{10}\)+\(\frac{3}{11}\) +\(\frac{3}{12}\) +\(\frac{3}{13}\) +\(\frac{3}{14}\)

Chứng tỏ : 1< A< 2

3) c/m: \(\frac{1}{26}\)+\(\frac{1}{27}\) +\(\frac{1}{28}\) + ...... +\(\frac{1}{50}\) < 1- \(\frac{1}{2}\)+\(\frac{1}{3}\) - \(\frac{1}{4}\) + ......+\(\frac{1}{49}\) -\(\frac{1}{50}\)

Help me, please!!!!

Mình đang cần gấp! Trước thứ hai nha! Thanks!!!

Pham Cong Anh
5 tháng 5 2019 lúc 19:52

\(\frac{3}{2^2}\cdot\frac{8}{3^2}\cdot\frac{15}{4^2}\cdot.....\cdot\frac{899}{30^2}\)

\(=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\frac{3\cdot5}{4\cdot4}\cdot.....\cdot\frac{29\cdot31}{30\cdot30}\)

\(=\frac{1}{2}\cdot\frac{3}{2}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot\frac{3}{4}\cdot\frac{5}{4}\cdot....\cdot\frac{29}{30}\cdot\frac{31}{30}\)

\(=\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{29}{30}\right)\cdot\left(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot....\cdot\frac{31}{30}\right)\)

\(=\frac{1}{30}\cdot\frac{31}{2}\)

\(=\frac{31}{60}\)

b, \(A=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)

Ta có:

\(\frac{3}{15}< \frac{3}{10}=\frac{3}{10}\)

\(\frac{3}{15}< \frac{3}{11}< \frac{3}{10}\)

\(\frac{3}{15}< \frac{3}{12}< \frac{3}{10}\)

\(\frac{3}{15}< \frac{3}{13}< \frac{3}{10}\)

\(\frac{3}{15}< \frac{3}{14}< \frac{3}{10}\)

\(\Rightarrow\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}< \frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}\)

\(\Rightarrow\frac{3\cdot5}{15}< A< \frac{3\cdot5}{10}\)

\(\Rightarrow1< A< \frac{15}{10}=\frac{3}{2}\)

\(\frac{3}{2}< 2\)

\(\Rightarrow1< A< 2\)

c ,Ta có

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{25}\right)+\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}\)


Các câu hỏi tương tự
Hoàng Vân Nhi
Xem chi tiết
Phạm Ninh Đan
Xem chi tiết
Phạm Ninh Đan
Xem chi tiết
Thắng Nguyễn
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Mai Anh Tào Nguyễn
Xem chi tiết
Đậu Lê Mai Linh
Xem chi tiết
Linh nguyen thuy
Xem chi tiết
Thiện Tuấn Võ
Xem chi tiết