1,
a, Để \(\frac{8}{x+2}\) nhận giá trị là số tự nhiên \(\Rightarrow\)\(8⋮x+2\Rightarrow x+2\in\text{Ư}\left(8\right)=\left\{1;2;4;8\right\}\)
\(\Rightarrow x\in\left\{-1;0;2;6\right\}\)
Vì \(x\in N\Rightarrow x\in\text{ }\left\{0;2;6\right\}\)
Vậy \(x\in\left\{0;2;6\right\}\)
b, Để \(\frac{x+3}{x+1}\) nhận giá trị là số tự nhiên\(\Rightarrow\left\{{}\begin{matrix}x+3⋮x+1\\x+1⋮x+1\end{matrix}\right.\Rightarrow x+3-x+1⋮x+1\Rightarrow2⋮x+1\)
\(\Rightarrow x+1\in\text{Ư}\left(2\right)=\left\{1;2\right\}\)\(\Rightarrow x\in\left\{0;1\right\}\)
Vậy \(x\in\left\{0;1\right\}\)
- Bài 2:
b) S = 1 + 2 + 22 +.... + 211
= (1+23) + (2 + 24) +..... + (28+ 211)
= (1+23) + 2(1+23)+....+28(1+23)
= 9 + 2.9 + .... + 28.9
= 9.(1+2+...+28) ⋮ 9
Vậy S ⋮ 9