a) \(3\cdot\left|x-2\right|=3\)
= \(\left|x-2\right|=1\)
\(\Rightarrow\left\{\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=3\\x=1\end{matrix}\right.\)
b) \(\left|2x+3\right|=5\)
\(\Rightarrow\left\{\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
c) \(2-x=17\cdot\left(-5\right)\)
= \(2-x=-85\)
\(\Rightarrow x=87\)
d) \(8-\left|x+3\right|=16:2^3\)
= \(8-\left|x+3\right|=2\)
= \(\left|x+3\right|=6\)
\(\Rightarrow\left\{\begin{matrix}x+3=-6\\x+3=6\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-9\\x=3\end{matrix}\right.\)
a) \(3\left|x-2\right|=3\)
\(\Rightarrow\left|x-2\right|=1\)
\(\Rightarrow x-2=1\) hoặc \(x-2=-1\)
Với \(x-2=1\) \(\Rightarrow x=3\)
Với \(x-2=-1\) \(\Rightarrow x=1\)
Vậy \(x=3\) hoặc \(x=1\).
b) \(\left|2x+3\right|=5\)
\(\Rightarrow2x+3=5\) hoặc \(2x+3=-5\)
Với \(2x+3=5\) \(\Rightarrow2x=2\Rightarrow x=1\)
Với \(2x+3=-5\Rightarrow2x=-8\Rightarrow x=-4\)
Vậy \(x=1\) hoặc \(x=-4.\)
c) \(2-x=17\left(-5\right)\)
\(\Rightarrow2-x=-85\)
\(\Rightarrow x=2+85\)
\(\Rightarrow x=87\)
Vậy \(x=87\).
d) \(8-\left|x+3\right|=16:2^3\)
\(\Rightarrow8-\left|x+3\right|=2\)
\(\Rightarrow\left|x+3\right|=6\)
\(\Rightarrow x+3=6\) hoặc \(x+3=-6\)
Với \(x+3=6\) \(\Rightarrow x=3\)
Với \(x+3=-6\) \(\Rightarrow x=-9\)
Vậy \(x=3\) hoặc \(x=-9\).
/x-2/=3:3
/x-2/=1
x-2=1 hoặc x-2=1
x=-1+2 hoặc =1+2
x=1 hoặc x=3
vậy xthuộc {-1;3}