Chủ đề:
Violympic toán 9Câu hỏi:
Cho \(a=\frac{x+1}{x};b=\frac{y+1}{y};c=\frac{z+1}{z}\)và \(z=xy\)
Tính \(a^2+b^2+c^2-abc\)
Môn học
Chủ đề / Chương
Bài học
Bài 1: Cho \(\text{a+b+c=ab+bc+ac=abc}\) \(\ne\) \(0\) và \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
Tính \(A=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Bài 2: Cho \(a,b,c\ne0\). CMR nếu \(x,y\) thỏa mãn :
\(\dfrac{a}{c}x+\dfrac{b}{c}y=\dfrac{b}{a}x+\dfrac{c}{a}y=\dfrac{c}{b}x+\dfrac{a}{b}y=1\)
thì \(\dfrac{a^2}{bc}+\dfrac{b^2}{ac}+\dfrac{c^2}{ab}=3\)
Bài 3: Cho \(ax+by+cz=0\) và \(a+b+c=\dfrac{1}{2019}\)
Tính \(A=\dfrac{a^2x^2+b^2y^2+c^2z^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)