Câu trả lời:
\(\sqrt{\dfrac{x+3}{x-1}}+3\sqrt{\dfrac{x-1}{x+3}}=4\left(1\right)\)
Đặt \(\sqrt{\dfrac{x+3}{x-1}}=a\left(a\ge0\right)\Rightarrow\sqrt{\dfrac{x-1}{x+3}}=\dfrac{1}{a}\)
\(\left(1\right)\Rightarrow a+\dfrac{3}{a}=4\)
\(\Leftrightarrow a^2+3=4a\)
\(\Leftrightarrow\left(a-1\right)\left(a-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=3\end{matrix}\right.\left(\text{nhận}\right)\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{\dfrac{x+3}{x-1}}=1\\\sqrt{\dfrac{x+3}{x-1}}=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{x+3}{x-1}=1\\\dfrac{x+3}{x-1}=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=x-1\\x+3=9x-9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3=-1\left(\text{vô lý}\right)\\x=\dfrac{3}{2}\left(\text{nhận}\right)\end{matrix}\right.\)
Vậy (1) có tập no \(S=\left\{\dfrac{3}{2}\right\}\)