Vòng 3

Câu I:

 1) So sánh hợp lí:

a)\(\left(\frac{1}{16}\right)^{200}\) và \(\left(\frac{1}{2}\right)^{1000}\)

Có: \(\left(\frac{1}{16}\right)^{200}=\left(\left(\frac{1}{2}\right)^4\right)^{200}=\left(\frac{1}{2}\right)^{800}\)

Vì \(\left(\frac{1}{2}\right)^{800}< \left(\frac{1}{2}\right)^{1000}\) nên \(\left(\frac{1}{16}\right)^{200}< \left(\frac{1}{2}\right)^{1000}\)

b) \(\left(-32\right)^{27}\) và \(\left(-18\right)^{39}\)

Có: \(\left(-32\right)^{27}=\left(\left(-32\right)^9\right)^3\);\(\left(-18\right)^{39}=\left(\left(-18\right)^{13}\right)^3\)

Có: \(\left(-32\right)^9=\left(\left(-2\right)^5\right)^9=\left(-2\right)^{45}=\left(-2\right)^{13}.2^{32}\);\(\left(-18\right)^{13}=\left(-2\right)^{13}.9^{13}=\left(-2\right)^{13}.\left(3^2\right)^{13}=\left(-2\right)^{13}.3^{26}\)

Có: \(2^{32}=\left(2^{16}\right)^2\);\(3^{26}=\left(3^{13}\right)^2\)

Có: \(2^{16}=65536;3^{13}=1594323\)

Vì \(2^{16}< 3^{13}\) nên \(2^{32}< 3^{26}\) hay \(\left(-2\right)^{13}.2^{32}>\left(-2\right)^{13}.3^{26}\)\(\Rightarrow\left(\left(-2\right)^5\right)^9>\left(-2\right)^{13}.9^{13}\)

\(\Rightarrow\left(-32\right)^9>\left(-18\right)^{13}\)\(\Rightarrow\left(-32\right)^{27}>\left(-18\right)^{39}\)

2) ĐK: x,y,z,t∈ℕ*.

*Có:​\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\);\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t};\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\);\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)

\(\Rightarrow\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}>\frac{x+y+z+t}{x+y+z+t}=1\)

Vậy M>1(1).

* Ta có: \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

C/m: \(\Leftrightarrow\frac{x+t}{x+y+z+t}-\frac{x}{x+y+z}>0\)

\(\Leftrightarrow\frac{\left(x+t\right)\left(x+y+z\right)-x\left(x+y+z+t\right)}{\left(x+y+z+t\right)\left(x+y+z\right)}>0\)

Vì x.y,z,t>0 nên \(\left(x+y+z+t\right)\left(x+y+z\right)>0\)

\(\Rightarrow\left(x+t\right)\left(x+y+z\right)-x\left(x+y+z+t\right)>0\)

\(\Leftrightarrow x^2+xy+xz+xt+yt+zt-x^2-xy-xz-xt>0\)

\(\Leftrightarrow t\left(x+y\right)>0\)(LĐ với x,y,z,t>0)

Vậy \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\).

CMTT, ta được: \(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\);\(\frac{z}{y+z+t}< \frac{x+z}{x+y+z+t}\);\(\frac{t}{x+z+t}< \frac{y+t}{x+y+z+t}\)

\(\Rightarrow\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)

Vậy M<2.(2)

Từ (1) và (2), ta có: 1<M<2.

Vì 1;2 là 2 số tự nhiên liên tiếp nên M có giá trị không phải là số tự nhiên.

3) a)\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

Vi \(\left(3x-5\right)^{2006};\left(y^2-1\right)^{2008};\left(x-z\right)^{2100}\ge0\) nên \(\left\{{}\begin{matrix}\left(3x-5\right)^{2006}=0\\\left(y^2-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{matrix}\right.\)\(\Rightarrow3x-5=y^2-1=x-z=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{3}\\y=\pm1\\z=\frac{5}{3}\end{matrix}\right.\)(KTM vì x,y,z∈ℕ)

Vậy không tìm được x,y,z thỏa mãn đk x,y,z ∈ℕ.

b)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x^2+y^2+z^2=116\)

Có:\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)

Theo t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)

\(\Rightarrow x^2=4.4=16\Rightarrow\left[{}\begin{matrix}x=1\left(TM\right)\\x=-1\left(KTM\right)\end{matrix}\right.\);

\(y^2=4.9=36\Rightarrow\left[{}\begin{matrix}y=6\left(TM\right)\\y=-6\left(KTM\right)\end{matrix}\right.\);

\(z^2=4.16=64\Rightarrow\left[{}\begin{matrix}z=8\left(TM\right)\\z=-8\left(KTM\right)\end{matrix}\right.\)

Câu II:

 1) a)\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)

ĐK: \(\left\{{}\begin{matrix}2-x\ne0\\x^2-4\ne0\\2+x\ne0\\2x^2-x^3\ne0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ne2\\x\ne-2\\x\ne0\end{matrix}\right.\)

Ta có: \(A=\frac{\left(2+x\right)^2+4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}.\frac{x^2\left(2-x\right)}{x\left(x-3\right)}\)ĐK: \(x\ne3\)

\(A=\frac{8x+4x^2}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)

\(A=\frac{4x\left(2+x\right)x}{\left(2+x\right)\left(x-3\right)}\)\(=\frac{4x^2}{x-3}\)

b) Để A>0 thì ​​\(\frac{4x^2}{x-3}>0\)\(\Rightarrow x-3>0\)(Vì \(4x^2>0\))

\(\Leftrightarrow x>3\)

Vậy với x>3 thì A>0.

c) Ta có: \(\left|x-7\right|=4\)

*Với \(x-7\ge0\Leftrightarrow x\ge7\)

\(\Rightarrow x-7=4\Leftrightarrow x=11\left(TM\right)\)

Thay x=11 vào A, ta có:

\(A=\frac{4x^2}{x-3}=\frac{4.11^2}{11-3}=\frac{121}{2}\)

*Với \(x-7< 0\Leftrightarrow x< 7\)

\(\Rightarrow x-7=-4\Leftrightarrow x=3\left(KTMĐKXĐ\right)\)

2) Ptích các đa thức thành nhân tử:

a)\(3x^2-7x+2=3x^2-x-6x+2\)

\(=x\left(3x-1\right)-2\left(3x-1\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

b) \(a\left(x^2+1\right)-x\left(a^2+1\right)\)

\(=ax^2+a-xa^2-x\)

\(=ax\left(x-a\right)-\left(x-a\right)\)

\(=\left(ax-1\right)\left(x-a\right)\)

Câu III:

1) Giải pt:

 b)\(\sqrt{3x^2-12x+21}+\sqrt{5x^2-20x+24}=-2x^2+8x-3\)\(\left(ĐK:\left\{{}\begin{matrix}3x^2-12x+21\ge0\\5x^2-20x+24\ge0\\-2x^2+8x-3\ge0\end{matrix}\right.\right)\)

Đặt \(a=\sqrt{3x^2-12x+21};b=\sqrt{5x^2-20x+24}\left(a,b\ge0\right)\)

Ta có hpt: \(\left\{{}\begin{matrix}a^2-b^2=-2x^2+8x-3\left(1\right)\\a+b=-2x^2+8x-3\left(2\right)\end{matrix}\right.\)

Lấy (1)-(2), ta được: \(a^2-b^2-\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b-1\right)=0\)

*Xét TH 1: a+b=0 ​.

\(\Rightarrow\sqrt{3x^2-12x+21}+\sqrt{5x^2-20x+24}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{3x^2-12x+21}=0\\\sqrt{5x^2-20x+24}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}3x^2-12x+21=0\\5x^2-20x+24=0\end{matrix}\right.\)(vô nghiệm)

* Xét TH 2:a-b=1

\(\Rightarrow\sqrt{3x^2-12x+21}-\sqrt{5x^2-20x+24}=1\)

\(\Leftrightarrow\sqrt{3x^2-12x+21}-3-\left(\sqrt{5x^2-20x+24}-2\right)=0\)

\(\Leftrightarrow\frac{3x^2-12x+12}{\sqrt{3x^2-12x+21}+3}-\frac{5x^2-20x+20}{\sqrt{5x^2-20x+24}+2}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left[\frac{3}{\sqrt{3x^2-12x+21}+3}-\frac{5}{\sqrt{5x^2-20x+24}+2}\right]=0\)

*TH 1: ​\(\left(x-2\right)^2=0\Leftrightarrow x=2\left(TM\right)\)

*TH 2: \(\left[\frac{3}{\sqrt{3x^2-12x+21}+3}-\frac{5}{\sqrt{5x^2-20x+24}+2}\right]=0\)

\(\Rightarrow3\left(\sqrt{5x^2-20x+24}+2\right)-5\left(\sqrt{3x^2-12x+21}+3\right)=0\)

\(\Leftrightarrow3\sqrt{5x^2-20x+24}-5\sqrt{3x^2-12x+21}-9=0\)(vô nghiệm).

Vậy S={2}.

2) \(2^x+2^y+2^z=672\)

\(\Leftrightarrow2^x\left(1+2^{y-x}+2^{z-x}\right)=672=2^5.21\)

\(\Rightarrow x=5\left(TM\right)\);\(2^{y-5}+2^{z-5}=20\)

\(\Leftrightarrow\frac{2^y+2^z}{2^5}=20\)

\(\Rightarrow2^y\left(1+2^{z-y}\right)=640=2^7.5\)

\(\Rightarrow y=7\left(TM\right);2^{z-7}=4\)

\(\Rightarrow z-7=2\Leftrightarrow z=9\left(TM\right)\)

Vậy (x;y;z)=(5;7;9).

1) a) \(\sqrt{5-x}+\sqrt{y-2005}+\sqrt{z+2007}=\frac{1}{2}\left(x+y+z\right)\)ĐK: \(x\le4;y\ge2005;z\ge-2007\);\(x+y+z\ge0\)

Giả sử x;y;z là số nguyên.

\(\Leftrightarrow2\left(\sqrt{5-x}+\sqrt{y-2005}+\sqrt{z+2007}\right)=x+y+z\)

\(\Leftrightarrow\left(\sqrt{5-x}-1\right)^2+\left(\sqrt{y-2005}-1\right)^2+\left(\sqrt{z+2007}-1\right)^2-2\left(5-x\right)=0\)

Đặt \(a=\sqrt{5-x};b=\sqrt{y-2005};c=\sqrt{z+2007}\left(a;b;c\ge0\right)\)

\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2-2a^2=0\)

\(\Leftrightarrow-a^2-2a+1+\left(b-1\right)^2+\left(c-1\right)^2=0\)

\(\Leftrightarrow-\left(a+1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=-2\)

\(\Leftrightarrow\left(a+1\right)^2-\left(b-1\right)^2-\left(c-1\right)^2=2=2^2-1^2-1^2\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=2\end{matrix}\right.\)(TM)\(\Rightarrow\left\{{}\begin{matrix}5-x=1\\y-2005=4\\z+2007=4\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=2009\\z=-2003\end{matrix}\right.\)(TM)

Vậy (x;y;z)=(4;2009;-2003).

Với x;y;z không là số nguyên thì ta không tìm được x,y,z thỏa mãn.

Vậy (x;y;z)=(4;2009;-2003).

 

 

Điểm  12.75

Nhận xét: