Vòng 3

Câu I:

1. a) \(\left(\dfrac{1}{16}\right)^{200}=\left(\dfrac{1}{2^4}\right)^{200}=\dfrac{1}{2^{800}}\) 

\(\left(\dfrac{1}{2}\right)^{1000}=\dfrac{1}{2^{1000}}\)

Vì 2800 < 21000 => \(\dfrac{1}{2^{800}}>\dfrac{1}{2^{1000}}\)

=> \(\left(\dfrac{1}{16}\right)^{200}>\dfrac{1}{2^{1000}}\)

b) (-32)27 = -(329)3 = -(245)3 = -(213.232)3 = -(213.215.217)3

(-18)39 = -(2.32)39 = -(213.326)3 = -(213.315.311)3

Vì 311 > 217 (do 177147 > 131072); 215 < 315

=> 213.215.217 < 213.315.311

=> (213.215.217)3 < (213.315.311)3

=> 3227 < 1839

=> (-32)27 < (-18)39

2. Ta có: 0 < x + y + z < x + y + z + t

=> \(\dfrac{1}{x+y+z}>\dfrac{1}{x+y+z+t}\)

=> \(\dfrac{x}{x+y+z}>\dfrac{x}{x+y+z+t}\)

Chứng minh tương tự ta có:

\(\dfrac{y}{y+z+t}>\dfrac{y}{x+y+z+t}\)

\(\dfrac{z}{z+t+x}>\dfrac{z}{x+y+z+t}\)

\(\dfrac{t}{t+x+y}>\dfrac{t}{x+y+z+t}\)

=> M > \(\dfrac{x}{x+y+z+t}+\dfrac{y}{x+y+z+t}+\dfrac{z}{x+y+z+t}+\dfrac{t}{x+y+z+y}=1\) (1)

 

Ta có: \(\dfrac{x}{x+y+z}< \dfrac{x+t}{x+y+z+t}\) (*)

Thật vậy, (*) <=> x(x + y + z + t) < (x + t)(x + y + z)

<=> xt + x(x + y + z) < x(x + y + z) + t(x + y + z)

<=> xt < t(x + y + z)

<=> x < x + y + z

<=> 0 < x + y + z (luôn đúng)

Tương tự ta có:

\(\dfrac{y}{y+z+t}< \dfrac{x+y}{x+y+z+t}\)

 

\(\dfrac{z}{z+t+x}< \dfrac{y+z}{x+y+z+t}\)

\(\dfrac{t}{t+x+y}< \dfrac{z+t}{x+y+z+t}\)

=> M < \(\dfrac{x+y}{x+y+z+t}+\dfrac{y+z}{x+y+z+t}+\dfrac{z+t}{x+y+z+t}+\dfrac{t+x}{x+y+z+t}=2\) (2)

Từ (1) và (2) => 1 < M < 2

=> M không phải số nguyên

3. a) Vì \(\left\{{}\begin{matrix}\left(3x-5\right)^{2006}\ge0\forall x\\\left(y^2-1\right)^{2008}\ge0\forall y\\\left(x-z\right)^{2100}\ge0\forall z;x\end{matrix}\right.\)

=> (3x - 5)2006 + (y2 - 1)2008 + (x - z)2100 ≥ 0

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\left(3x-5\right)^{2006}=0\\\left(y^2-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}3x-5=0\\y^2-1=0\\x-z=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=z=\dfrac{5}{3}\\\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=z=\dfrac{5}{3}\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=z=\dfrac{5}{3}\\y=-1\end{matrix}\right.\end{matrix}\right.\)

Vậy các cặp (x; y; z) thỏa mãn pt là (\(\dfrac{5}{3};1;\dfrac{5}{3}\)) và (\(\dfrac{5}{3};-1;\dfrac{5}{3}\))

b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)

=> \(\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\)

x2 + y2 + z2 = 116

<=> (2k)2 + (3k)2 + (4k2) = 116

<=> 4k2 + 9k2 + 16k2 = 116

<=> 29k2 = 116

<=> k2 = 4

<=> \(\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)

*) k = 2

=> \(\left\{{}\begin{matrix}x=2.2=4\\y=2.3=6\\z=2.4=8\end{matrix}\right.\)

*) k = -2

=> \(\left\{{}\begin{matrix}x=-2.2=-4\\y=-2.3=-6\\z=-2.4=-8\end{matrix}\right.\)

Vậy các cặp (x; y; z) thỏa mãn là (4; 6; 8) và (-4; -6; -8)

Câu II:
1. a) ĐKXĐ:  \(\left\{{}\begin{matrix}2-x\ne0\\x^2-4\ne0\\2+x\ne0\\2x^2-x^3\ne0\end{matrix}\right.\) và x2 - 3x ≠ 0 <=> \(\left\{{}\begin{matrix}x\ne2\\x\ne-2\\x\ne0\\x\ne3\end{matrix}\right.\)

\(A=\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{x+2}\right):\left(\dfrac{x^2-3x}{2x^2-x^3}\right)\)

\(A=\left(\dfrac{x+2}{x-2}+\dfrac{4x^2}{x^2-4}-\dfrac{x-2}{x+2}\right):\left(\dfrac{x^2-3x}{x^3-2x^2}\right)\)

\(A=\dfrac{\left(x+2\right)^2+4x^2-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}:\dfrac{x\left(x-3\right)}{x^2\left(x-2\right)}\)

\(A=\dfrac{x^2+4x+4+4x^2-x^2+4x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x-3}{x\left(x-2\right)}\)

\(A=\dfrac{4x^2+8x}{\left(x-2\right)\left(x+2\right)}.\dfrac{x\left(x-2\right)}{x-3}\)

\(A=\dfrac{4x^2\left(x+2\right)}{\left(x+2\right)\left(x-3\right)}\)

\(A=\dfrac{4x^2}{x-3}\)

b) \(A>0\) <=> \(\dfrac{4x^2}{x-3}>0\)

mà 4x2 > 0 ∀ x ≠ 0

=> x - 3 > 0 <=> x > 3

Kết hợp với ĐKXĐ ta có x > 3

c) |x - 7| = 4

<=> \(\left[{}\begin{matrix}x-7=4\\x-7=-4\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=11\left(TM\right)\\x=3\left(KTM\right)\end{matrix}\right.\)

<=> x = 11

Thay x = 11 (TM ĐKXĐ) vào A ta có:

\(A=\dfrac{4.11^2}{11-3}=\dfrac{484}{8}=\dfrac{121}{2}\)

2. a) 3x2 - 7x + 2 = 3x2 - 6x + x - 2 = 3x(x - 2) + (x - 2) = (3x + 1)(x - 

b) a(x2 + 1) - x(a2 + 1) = ax2 + a - xa2 - x = ax(x - a) - (x - a) = (ax - 1)(x - a)

Câu III:

1. a) \(\sqrt{x-5}+\sqrt{y-2005}+\sqrt{z+2007}\le\dfrac{x-5+1+y-2005+1+z+2007+1}{2}=\dfrac{1}{2}\left(x+y+z\right)\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x-5=1\\y-2005=1\\z+2007=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=6\\y=2006\\z=-2006\end{matrix}\right.\)

b) Ta có: \(\sqrt{3x^2-12x+21}+\sqrt{5x^2-20x+24}=\sqrt{3\left(x-2\right)^2+9}+\sqrt{5\left(x-2\right)^2+4}\ge\sqrt{9}+\sqrt{4}=5\)

=> VT ≥ 5 

VP = -2x2 + 8x - 3 = -2(x - 2)2 + 5 ≤ 5

=> VT ≥ 5 ≥ VP

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}VT=5\\VP=5\end{matrix}\right.\) <=> x = 2

Vậy phương trình có tập nghiệm S = {2}

2. Ta có: 29 = 512; 210 = 1024

mà 2x + 2y + 2z = 672; x < y < z

=> z ≤ 9

2x + 2y + 2z = 672 <=> 2x + 2y = 672 - 2≥ 672 - 29 = 160

Nếu x < y < 0 => 2x + 2y< 1 + 1 = 2 => 2x + 2y + 2z < 2 + 512 = 514 < 672

=> pt vô nghiệm

=> y > 0

=> 2y > 2x

=> 2y  > \(\dfrac{2^x+2^y}{2}\)  ≥ \(\dfrac{160}{2}\) = 80

=> y ≥ 7

Với 7 ≤ y < z ≤ 9 ta có các trường hợp:

TH1: y = 7; z = 8

pt <=> 2x + 27 + 28 = 672

<=> 2x = 288

=> không có x nguyên thỏa mãn

TH2: y = 7; z = 9

pt <=> 2x + 27 + 29 = 672

<=> 2x = 32

<=> x = 5 (TM)

TH3: y = 8; z = 9

pt <=> 2x + 28 + 29 = 672

<=> 2x = -96

=> không có x thỏa mãn

Vậy phương trình có cặp nghiệm nguyên (x; y; z) = (5; 7; 9)

Điểm  19.75

Nhận xét: