Bài 4: Ôn tập chương Giới hạn

Bài 1 (SGK trang 141)

Hướng dẫn giải

Một vài giới hạn đặc biệt của dãy số

Giới hạn dãy

Giới hạn hàm

lim1n=0lim1nk=0,K∈Z∗limqn=0,|q|<1limc=climnk=+∞,K∈Z∗limqn=+∞,q>1lim1n=0lim1nk=0,K∈Z∗limqn=0,|q|<1limc=climnk=+∞,K∈Z∗limqn=+∞,q>1

limx→x0x=x0limx→x0c=climx→±∞cxk=0,K∈z∗limx→x0⁡x=x0limx→x0⁡c=climx→±∞⁡cxk=0,K∈z∗

limx→−∞xk=+∞limx→−∞⁡xk=+∞(nếu k chẵn)

limx→−∞xk=−∞limx→−∞⁡xk=−∞(nếu k lẻ)

(Trả lời bởi Ba Thị Bích Vân)
Thảo luận (2)

Bài 2 (SGK trang 141)

Hướng dẫn giải

+ Với mọi n ∈ N*, ta có:

|un – 2| ≤ vn ⇔ -vn ≤ un – 2 ≤ vn

+ Mà lim (-vn) = lim (vn) = 0 nên

lim (un – 2) = 0 ⇔ lim un – lim 2 = 0 ⇔ lim un = 2


(Trả lời bởi Minh Thư)
Thảo luận (1)

Bài 3 (SGK trang 141)

Bài 4 (SGK trang 142)

Bài 5 (SGK trang 142)

Bài 6 (SGK trang 142)

Bài 7 (SGK trang 143)

Hướng dẫn giải

Ta có:

limx→2+g(x)=limx→2+x2−x−2x−2=limx→2+(x−2)(x+1)x−2=limx→2+(x+1)=3limx→2+⁡g(x)=limx→2+⁡x2−x−2x−2=limx→2+⁡(x−2)(x+1)x−2=limx→2+⁡(x+1)=3

(1)

limx→2−g(x)=limx→2−(5−x)=3limx→2−⁡g(x)=limx→2−⁡(5−x)=3(2)

g(2) = 5 – 2 = 3 (3)

Từ (1), (2) và (3) suy ra: limx→2g(x)=g(2)limx→2⁡g(x)=g(2) .

Do đó hàm số y = g(x) liên tục tại x0 = 2

_ Mặt khác trên (-∞, 2), g(x) là hàm đa thức và trên (2, +∞), g(x) là hàm số phân thức hữu tỉ xác định trên (2, +∞) nên hàm số g(x) liên tục trên hai khoảng (-∞, 2) và (2, +∞)

Vậy hàm số y = g(x) liêu tục trên R.


(Trả lời bởi Minh Hải)
Thảo luận (2)

Bài 8 (SGK trang 143)

Hướng dẫn giải

Đặt f(x) = x5 – 3x4 + 5x – 2, ta có:

⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩f(−2)=(−2)5−3(−2)4+5(−2)−2<0f(0)=−2<0f(1)=1−3+5−2=1>0f(2)=25−3.24+5.2−2=−8<0f(2)=35−3.34+5.3−2=13<0⇒⎧⎪⎨⎪⎩f(0).f(1)<0(1)f(1).f(2)<0(2)f(2).f(3)<0(3){f(−2)=(−2)5−3(−2)4+5(−2)−2<0f(0)=−2<0f(1)=1−3+5−2=1>0f(2)=25−3.24+5.2−2=−8<0f(2)=35−3.34+5.3−2=13<0⇒{f(0).f(1)<0(1)f(1).f(2)<0(2)f(2).f(3)<0(3)

_ Hàm số f(x) là hàm số đa thức liên tục trên R.

⇒ Hàm số f(x) liên tục trên các đoạn [0, 1], [1, 2], [2, 3] (4)

Từ (1), (2), (3) và (4) ⇒ phương trình x5 – 3x4 + 5x – 2 = 0 có ít nhất một nghiệm trên mỗi khoảng (0, 1), (1, 2), (2, 3).

Vậy phương trình x5 – 3x4 + 5x – 2 = 0 có ít nhất ba nghiệm trên khoảng (-2, 5) (đpcm)

(Trả lời bởi Minh Hải)
Thảo luận (2)

Bài 1 (Sách bài tập trang 170)

Bài 2 (Sách bài tập trang 170)