a) Vẽ đường tròn tâm O, bán kính R = 2 cm. Nêu cách vẽ cung AB có số đo bằng 60o. Hỏi dây AB dài bao nhiêu cm?
b) Làm thế nào để chia được đường tròn thành 6 cung bằng nhau như trên hình vẽ.
a) Vẽ đường tròn tâm O, bán kính R = 2 cm. Nêu cách vẽ cung AB có số đo bằng 60o. Hỏi dây AB dài bao nhiêu cm?
b) Làm thế nào để chia được đường tròn thành 6 cung bằng nhau như trên hình vẽ.
Cho hai đường tròn bằng nhau (O) và (O') cắt nhau tại hai điểm A và B. Kẻ các đường kính AOC, AO'D. Gọi E là giao điểm thứ hai của AC với đường tròn (O').
a) So sánh các cung nhỏ BC, BD.
b) Chứng minh rằng B là điểm chính giữa của cung EBD (tức là điểm B chia cung EBD thành hai cung bằng nhau).
Thảo luận (1)Hướng dẫn giảia) Nối C đến D.
Ta có 2 đường tròn bằng nhau => AC = AD
=> ∆ ACD cân tại A
Lại có góc ABC = 90°; do có OB = OC = OA = R ( tính chất trung tuyến ứng với cạnh huyền )
Tương tự có góc ABD = 90°
=> ABC + ABD = 180°
=> C; B; D thẳng hàng và AB ⊥ CD
=> BC = BD
=> cung BC = cung BD
b) Nối E đến D; từ B hạ BH ⊥ ED Ta có góc DEA = 90° ( chứng minh tương tự theo (a) )
=> BH // EC
Mà theo (a) ta có BE = BD
=> BH là đường trung bình tam giác CDE
=> HE = HD mà BH ⊥ ED => B là điểm chính giữa cung EBD
(Trả lời bởi ¨°o.O♫♀¤♪ Zin Phan ♪¤♂♫O...)
Cho tam giác ABC. Trên tia đối của toa AB lấy một điểm D sao cho AD = AC. Vẽ đường tròn tâm O ngoại tiếp tam giác DBC. Từ O lần lượt hạ các đường vuông góc OH, OK với BC và BD. \(\left(H\in BC,K\in BD\right).\)
a) Chứng minh rằng OH > OK.
b) So sánh hai cung nhỏ BD và BC.
Thảo luận (1)Hướng dẫn giải
a) Trong ∆ABC, có BC < BA + AC.
Mà AC = AD suy ra BC < BD.
Theo định lí về dây cung và khoảng cách từ dây đến tâm, ta có OH > Ok.
b) Ta có BC < BD (cmt)
Nên suy ra BC < BD ( liên hệ cung và dây)
(Trả lời bởi Quốc Đạt)
Chứng minh rằng trong một đường tròn, hai cung bị chắn giữa hai dây song song thì bằng nhau.
Thảo luận (2)Hướng dẫn giảiGiả sử AB và CD là các dây song song của đường tròn (O).
Kẻ OI ⊥ AB (I ∈ AB) và OK ⊥ CD (K∈CD).
Do AB //CD nên I,O,K thẳng hàng.
Do các tamgiác OAB, OCD là các tam giác cân đỉnh O nên các đường cao kẻ từ đỉnh đồng thời là phân giác.
Vì vậy ta có: Góc ∠O1 = ∠O2, ∠O3 = ∠O4
Giả sử AB nằm ngoài góc COD, ta có: ∠AOC = 1800 – (∠O1 + ∠O3) = 1800 -(∠O2 + ∠O4) = ∠BOD
Suy ra cung AC= cung BD.
Nghĩa là hai cung bị chắn giữa hai dây song song thì bằng nhau. Các trường hợp khác ta chứng minh tương tự.
(Trả lời bởi Quốc Đạt)
a) Chứng minh rằng đường kính đi qua điểm chính giữa của một cung thì đi qua trung điểm của cung căng dây ấy. Mệnh đề đảo có đúng không? Hãy thêm điều kiện để mệnh đề đảo đúng.
b) Chứng minh rằng đường kính đi qua điểm chính giữa của một cung thì vuông góc với dây căng cung ấy và ngược lại.
Thảo luận (1)Hướng dẫn giảia) Giả sử đường kính CD của đường tròn (O) có C là điểm chính giữa của cung AB, nghĩa là cung AC = cung CB suy ra ∠O1 = ∠O2
Gọi I là giao điểm của CD và AB. Khi đó OI là phân giác, đồng thời là trung tuyến của tam giác OAB (Do ΔOAB cân đỉnh O)
Vậy I là trung điểm của AB.
+ Mệnh đề đảo không đúng vì nếu dây cung AB cũng là một đường kính thì dây CD đi qua trung điểm của dây AB nhưng không đi qua điểm chính giữa của cung AB.
+ Để mệnh đề đảo chúng ta cần bổ sung thêm: Đường kính đi qua trung điểm một dây không đi qua tâm của đường tròn thì đi qua điểm chính giữa của cung bị căng bởi dây ấy.
b) Thuận: Giả sử đường kính CD đi qua C là điểm chính giữa cung AB ⇒ cungAC = cungCB ⇒ AOC = COB ⇒ OC là tia phân giác của góc ∠AOB
Vì ΔOAB cân đỉnh O nên đường phân giác đồng thời là đường cao.
Vậy: OC ⊥ AB hay CD ⊥ AB.
Đảo: Giả sử đường kính AB ⊥ CD tại I.
Khi đó: OI là tia phân giác của góc ∠AOB ⇒ AOC = BOC ⇒ AC= BC
⇒ C là điểm giữa cung AB.
(Trả lời bởi Quốc Đạt)
Cho tam giác ABC có \(AB > AC. \) Trên cạnh AB lấy một điểm D sao cho AD = AC. Vẽ đường tròn tâm O ngoại tiếp tam giác DBC. Từ O lần lượt hạ các đường vuông góc OH, OK xuống BC (\(H\in BC,K\in BD\))
a) Chứng minh rằng OH <OK
b) So sánh hai cung nhỏ BD và BC
Thảo luận (1)Hướng dẫn giải
Trên dây cung AB của một đường tròn O, lấy hai điểm C và D chia dây này thành ba đoạn thẳng bằng nhau AC = CD = DB. Các bán kính qua C và D cắt cung nhỏ AB lần lượt tại E và F. Chứng minh rằng :
a) Cung AE = Cung FB
b) Cung AE = Cung EF
Thảo luận (1)Hướng dẫn giải
Cho đường tròn tâm O. Trên nửa đường tròn đường kính AB lấy hai điểm C, D. Từ C kẻ CH vuông góc với AB, nó cắt đường tròn tại điểm thứ hai là E. Từ A kẻ AK vuông góc với DC, nó cắt đường tròn tại điểm thứ hai là F. Chứng minh rằng :
a) Hai cung nhỏ CF và DB bằng nhau
b) Hai cung nhỏ BF và DE bằng nhau
c) DE = BF
Thảo luận (1)Hướng dẫn giải
Cho đường tròn (O). Gọi I là điểm chính giữa của cung AB (không phải là cung nửa đường tròn) và H là trung điểm của dây AB. Chứng minh rằng đường thẳng IH đi qua tâm O của đường tròn ?
Thảo luận (1)Hướng dẫn giảiVì I là điểm chính giữa của cung AB nên IA=IB
=>I nằm trên đường trung trực của AB(1)
Ta có: HA=HB
nên H nằm trên đường trung trực của AB(2)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(3)
Từ (1), (2) và (3) suy ra O,H,I thẳng hàng
(Trả lời bởi Nguyễn Lê Phước Thịnh)
Cho đường tròn (O; R). Hãy vẽ hai cung (không phải là cung lớn) biết rằng cung này có số đo gấp 3 lần số đo cung kia và có dây căng cung dài gấp đôi dây căng cung kia.
Thảo luận (1)Hướng dẫn giải