Toán

Quoc Tran Anh Le

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form: 

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

Những câu hỏi được chọn sẽ khả năng cao trở thành những bài đặc biệt được Cộng đồng lưu ý giải và thảo luận. Những bài toán chưa được duyệt nhưng các bạn chưa có lời giải, các bạn hãy gửi trực tiếp câu hỏi lên Hoc24 nhé!

-------------------------------------------------------------------

[Toán.C13 _ 17.1.2021]

Người biên soạn câu hỏi: Nguyễn Trúc Giang

Cho hình bình hành ABCD có M, N, P, Q là trung điểm của AB, BC, CD, AD. Biết diện tích ABC = 60 m2. Tính diện tích MNPQ (Giải bằng nhiều cách).

[Toán.C14 _ 17.1.2021]

Người biên soạn câu hỏi: Nguyễn Trọng Chiến

Tìm tất cả các số nguyên dương N có 2 chữ số sao cho tổng tất cả các chữ số của số \(10^N-N\) chia hết cho 170.

Sigma
Sigma CTV 10 giờ trước (8:33)

Câu 4b:

Ta có \(a-\sqrt{a}=\sqrt{b}-b\Leftrightarrow a+b=\sqrt{a}+\sqrt{b}\). (1)

Áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2};\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\).

Kết hợp với (1) ta có:

\(a+b\le\sqrt{2\left(a+b\right)}\Leftrightarrow0\le a+b\le2\).

Ta có: \(P\ge\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(\sqrt{a}+\sqrt{b}\right)^2}\) (Do \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\))

\(=\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}\) (Theo (1))

\(\Rightarrow P\ge\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}\).

Áp dụng bất đẳng thức AM - GM cho hai số thực dương và kết hợp với \(a+b\le2\) ta có:

\(\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}=\left[\dfrac{\left(a+b\right)^2}{2}+\dfrac{8}{\left(a+b\right)^2}\right]+\dfrac{2012}{\left(a+b\right)^2}\ge2\sqrt{\dfrac{\left(a+b\right)^2}{2}.\dfrac{8}{\left(a+b\right)^2}}+\dfrac{2012}{2^2}=4+503=507\)

\(\Rightarrow P\ge507\).

Đẳng thức xảy ra khi a = b = 1.

Vậy Min P = 507 khi a = b = 1.

 

Bình luận (0)
Sigma
Sigma CTV 10 giờ trước (8:47)

Giải nốt câu 4a:

ĐKXĐ: \(x\geq\frac{-1}{2}\).

Phương trình đã cho tương đương:

\(x^2+2x+1=2x+1+2\sqrt{2x+1}+1\)

\(\Leftrightarrow\left(x+1\right)^2=\left(\sqrt{2x+1}+1\right)^2\)

\(\Leftrightarrow\left(x+1\right)^2-\left(\sqrt{2x+1}+1\right)^2=0\)

\(\Leftrightarrow\left(x+1-\sqrt{2x+1}-1\right)\left(x+1+\sqrt{2x+1}+1\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+1}\right)\left(x+\sqrt{2x+1}+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2x+1}=0\left(1\right)\\x+\sqrt{2x+1}+2=0\left(2\right)\end{matrix}\right.\).

Ta thấy \(x+\sqrt{2x+1}+2>0\forall x\ge-\dfrac{1}{2}\).

Do đó phương trình (2) vô nghiệm.

Xét phương trình (1) \(\Leftrightarrow x=\sqrt{2x+1}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x-1\right)^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x-1=\sqrt{2}\\x-1=-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x=\sqrt{2}+1>0>-\dfrac{1}{2}\left(TM\right)\\x=-\sqrt{2}+1< 0\left(\text{loại}\right)\end{matrix}\right.\end{matrix}\right.\).

Vậy nghiệm của phương trình là \(x=\sqrt{2}+1\).

Bình luận (0)
Hồng Phúc
Hồng Phúc CTV 10 giờ trước (8:48)

4.

a, ĐK: \(x\ge-\dfrac{1}{2}\)

\(x^2-1=2\sqrt{2x+1}\)

\(\Leftrightarrow x^2+2x+1=2x+1+2\sqrt{2x+1}+1\)

\(\Leftrightarrow\left(x+1\right)^2=\left(\sqrt{2x+1}+1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+1}+1=x+1\\\sqrt{2x+1}+1=-x-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+1}=x\\\sqrt{2x+1}=-x-2\end{matrix}\right.\)

Vì \(x\ge-\dfrac{1}{2}\Rightarrow-x-2\le\dfrac{1}{2}-2< 0\)

Nên \(\sqrt{2x+1}=x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\2x+1=x^2\end{matrix}\right.\)

\(\Leftrightarrow x=1+\sqrt{2}\left(tm\right)\)

Vậy phương trình đã cho có nghiệm \(x=1+\sqrt{2}\)

Bình luận (0)
Quoc Tran Anh Le

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form: 

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

Hi vọng chuyên mục đầu tiên của chuỗi cuộc thi sẽ mang lại niềm vui và trải nghiệm thú vị cho các bạn. Những câu hỏi được chọn sẽ khả năng cao được đưa lên chuyên mục Câu hỏi hay. 

*Lưu ý mình sẽ duyệt những câu hỏi đạt đến độ khó nhất định, để cả cộng đồng cùng giải. Những bài toán chưa được duyệt nhưng các bạn chưa có lời giải, các bạn hãy gửi trực tiếp câu hỏi lên Hoc24 nhé!

-------------------------------------------------------------------

[Toán.C10 _ 14.1.2021]

Người biên soạn câu hỏi: Bách Khoa Huỳnh

Cho một đa giác đều 12 cạnh. Hỏi có bao nhiêu cách tô màu cách đỉnh của đa giác đó bằng ba màu đỏ, xanh, vàng. Biết rằng hai cách tô được gọi là giống nhau nếu như tồn tại một phép quay hoặc tồn tại một phép lật mặt đa giác biến đa giác này thành đa giác kia.

[Toán.C11 _ 14.1.2021]

Người biên soạn câu hỏi: Trần Minh Hoàng

Cho a, b là số đo các góc nhọn thỏa mãn tan a =\(\dfrac{1}{2}\) và tan b = \(\dfrac{1}{3}\). Chứng minh a + b = \(45^o\).

------------------------------------------------------------------

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Sigma
Sigma CTV Hôm kia lúc 8:48

Cho hỏi về C11. Phép lật mặt là gì vậy ạ :v

Bình luận (1)
Yehudim
Yehudim Hôm kia lúc 23:28

Toán.C11:

\(a+b=45^0\Rightarrow\cos\left(a+b\right)=\dfrac{\sqrt{2}}{2}\Leftrightarrow\cos a.\cos b-\sin a.\sin b=\dfrac{\sqrt{2}}{2}\) (1)

\(\tan a=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}\sin a=\dfrac{\sqrt{5}}{5}\\\cos\alpha=\dfrac{2}{5}\sqrt{5}\end{matrix}\right.\)

\(\tan b=\dfrac{1}{3}\Rightarrow\left\{{}\begin{matrix}\sin b=\dfrac{\sqrt{10}}{10}\\\cos b=\dfrac{3}{10}\sqrt{10}\end{matrix}\right.\)

Thay vô vế trái của 1 sẽ ra đpcm

P/s: Chắc phải có cách nào hay hơn cái cách toàn tính toẹt hết ra như vầy :v

 

Bình luận (0)
Yehudim
Yehudim Hôm kia lúc 23:35

À cái này cũng được, khỏi tính toán mất công nhiều, ghép công thức vô là ra

\(\tan\left(a+b\right)=1\)

\(tan\left(a+b\right)=\dfrac{\tan a+\tan b}{1-\tan a.\tan b}=1\Rightarrow dpcm\)

P/s: Mà bài này dành cho c2 hay c3 vậy? C2 thì chưa học biến đổi mấy ct lượng giác kia :v

Bình luận (3)
Quoc Tran Anh Le

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form: 

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

Hi vọng chuyên mục đầu tiên của chuỗi cuộc thi sẽ mang lại niềm vui và trải nghiệm thú vị cho các bạn. Những câu hỏi được chọn sẽ khả năng cao được đưa lên chuyên mục Câu hỏi hay. Lưu ý mỗi ngày mình sẽ đăng tối đa 4 câu hỏi cùng một môn học.

Ngày mai đến chuyên mục Vật lí nhé :>

-------------------------------------------------------------------

[Toán.C6 _ 13.1.2021]

Người biên soạn câu hỏi: Hồng Phúc

Cho \(a,b,c,d\in\left[0;1\right]\).

Chứng minh rằng: \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)+a+b+c+d\ge1\).

[Toán.C7 _ 13.1.2021]

Người biên soạn câu hỏi: Hồng Phúc

Cho hình vuông ABCD cạnh 1. Gọi M,N di động trên AD, CD sao cho góc MBN là góc nửa vuông.

Chứng minh: \(\sqrt{2}-1\le S_{BMN}\le\dfrac{1}{2}\)

[Toán.C8 _ 13.1.2021]

Người biên soạn câu hỏi: Võ Phan Phương Ngọc.

Nhà An cách trường khoảng 3km. Trường An tổ chức học tập trải nghiệm cho khối 9 vào cuối học kỳ I. An rời nhà lúc 6 giờ sáng và xe du lịch đến đón học sinh để xuất phát từ trường đi đến Đà Lạt với vận tốc trung bình 45 km/h.

a) Viết công thức biểu diễn quãng đường y(km) từ nhà An đến Đà Lạt theo thời gian x(giờ) mà xe di chuyển từ trường đến Đà Lạt.

b) Biết khoảng cách từ nhà An đến Đà Lạt khoảng 318km và trên đường di chuyển xe có nghỉ ngơi 1 giờ 30 phút. Tính thời điểm xe phải xuất phát từ trường để đến nơi vào lúc 15 giờ.

[Toán.C9 _ 13.1.2021] 

Người biên soạn câu hỏi: Nguyễn Đăng Mạnh Dũng

Cho hình chữ nhật ABCD. Trên đường chéo BD lấy điểm P sao cho BP < DP. Gọi M là điểm đối xứng của A qua P. Gọi E và F là hình chiếu của M trên BC và CD.

a) Tứ giác BMCD là hình gì?

b) Chứng minh EF // AC.

c) Chứng minh ba điểm: E, F, P thẳng hàng.

d) Gọi I là giao điểm của BC và DM. Giả sử diện tích tam giác CIM = 16cm^2, diện tích tam giác BID = 25cm^2. Tính diện tích tứ giác BMCD.

------------------------------------------------------------------

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Sigma
Sigma CTV 13 tháng 1 lúc 22:20

Câu 6: Thử làm phát :v

Bất đẳng thức cần chứng minh tương đương với:

\(1-a-b-c-d+ab+bc+cd+da+ac+bd-abc-bcd-cda-dab+abcd+a+b+c+d\ge1\)

\(\Leftrightarrow ab+bc+cd+da+ac+bd-abc-bcd-cda-dab+abcd\ge0\).

Điều trên luôn đúng do \(a,b,c,d\in\left[0;1\right]\).

(Hy vọng sẽ có cách khác chứ nhân ra ntn nhìn phức tạp quá).

Bình luận (0)
Yehudim
Yehudim 13 tháng 1 lúc 21:14

Mong mấy câu Vật Lý ngày mai sẽ khó hơn câu Toán.C8 một chút

a/ Quãng đường từ trường đến Đà Lạt:

\(S=vx=45x\left(km\right)\)

\(\Rightarrow y=3+45x\left(km\right)\)

b/ Từ trường đến Đà Lạt: 318-3= 315(km)

\(\Rightarrow x=\dfrac{315}{45}=7\left(h\right)\)

Thêm thời gian nghỉ 1,5h

\(\Rightarrow t=x+1,5=8,5\left(h\right)\)

\(\Rightarrow15-8,5=6,5\left(h\right)\)

Vậy xe xuất phát từ 6h 30'.

Và bạn An phải đi với vận tốc: \(\dfrac{3}{0,5}=6\left(km/h\right)\)

Bình luận (1)
Yehudim
Yehudim 13 tháng 1 lúc 21:16

Mà hình như câu Toán.C7 có người trả lời trên đây rồi mà?

Bình luận (2)
Quoc Tran Anh Le

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form: 

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

Hi vọng chuyên mục đầu tiên của chuỗi cuộc thi sẽ mang lại niềm vui và trải nghiệm thú vị cho các bạn. Những câu hỏi được chọn sẽ khả năng cao được đưa lên chuyên mục Câu hỏi hay.

Lưu ý, mỗi môn học có ít nhất 2 câu hỏi được duyệt mới đăng lên chuyên mục. Vậy hãy gửi ngay những câu bạn thấy hay và xứng đáng xuất hiện trong chuyên mục ngay :>

-------------------------------------------------------------------

[Toán.C4 _ 12.1.2021]

Người biên soạn câu hỏi: No name

Giải phương trình: \(\sqrt{5x^2+14x+9}+\sqrt{x^2-x-20}=5\sqrt{x+1}\)

[Toán.C5 _ 12.1.2021]

Người biên soạn câu hỏi: Quoc Tran Anh Le

Cho a,b,c đôi một khác nhau. Chứng minh rằng:

\(\dfrac{a^2+b^2}{\left(a-b\right)^2}+\dfrac{b^2+c^2}{\left(b-c\right)^2}+\dfrac{a^2+c^2}{\left(a-c\right)^2}\ge\dfrac{5}{2}\).

------------------------------------------------------------------

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Sigma
Sigma CTV 12 tháng 1 lúc 21:38

C4. Có cái tên của người biên soạn mà cũng giấu =))

Bình luận (4)

Chào các bạn, hy vọng tất cả các bạn đều đã thi xong và có thể tạm thời thoát khỏi núi bài ôn tập.

 

Như đã hứa, sau khi các bạn thi xong và mọi thứ ở phiên bản hoc24 mới bắt đầu đi vào ổn định, mình sẽ tổ chức 1 event nho nhỏ ở box Toán. Ừ, nhưng không có cuộc thi nào đâu, tổ chức thi tốn thời gian và cần nhiều não lắm, mấy cái này thì mình không có.

 

Đây là event dành cho box Toán và chỉ box Toán, đơn giản và nhanh gọn, dựa trên BXH môn Toán, mình đặt ra quy tắc như sau:

 

- Bắt đầu từ ngày mai (ngay sau thời điểm thầy phynit tổng kết trao thưởng tuần), cứ 3 tuần mình sẽ gọi là 1 Nhóm và 3 Nhóm gọi là 1 Chu kì.

 

- Trong thời gian 3 tuần (1 Nhóm), cộng GP trên bảng xếp hạng Toán, chia làm 2 kiểu: CTV và thành viên thường, tính riêng không liên quan gì đến nhau.

 

- Bạn CTV đứng đầu sẽ nhận phần thưởng 200k. Bạn thành viên thường nhận phần thường 150k. 

 

- Trong 1 Chu kì, một bạn chỉ được nhận thưởng tối đa 1 lần. (Ngắn gọn là trong 9 tuần 1 bạn chỉ được nhận thưởng tối đa 1 lần).

 

- Trong 1 Chu kì (9 tuần), sau khi loại trừ hết các bạn đã nhận thưởng, bạn có tổng điểm cao nhất sẽ được trao danh hiệu an ủi "Kẻ về nhì vĩ đại" cùng phần thưởng 100k. Trong cuộc đời, 1 người chỉ được nhận phần thưởng này đúng 1 lần. :D

 

- Điểm cộng dồn GP trong 3 tuần của 1 bạn chỉ tính tối đa tới 120GP. Vượt qua 120GP thì những con số đằng sau sẽ không có tác dụng.

 

- Nếu chỉ có 1 bạn đạt 120 điểm, bạn đó đương nhiên nhận thưởng (nếu không có bạn nào đạt con số 120 thì bạn cao nhất từ trên xuống sẽ nhận thưởng).

 

- Nếu nhiều bạn cùng đạt con số 120, thì thứ tự ưu tiên sẽ là: chất lượng câu trả lời, tốc độ đạt tới 120, sự nhiệt tình từ trước đến nay trên hoc24.

 

Phán xét chất lượng câu trả lời (đúng, đầy đủ, trả lời nhiều câu hỏi khó...) là 1 điều mang rất nhiều màu sắc cảm tính. Không sao, con người mình vốn đầy cảm tính, cho nên phải có 1 tiêu chuẩn gì đó không ổn định 1 chút :D

 

Phần hỏi đáp:

- Hỏi: em nhận thưởng tuần xong có còn được nhận thưởng ở đây không?

 Đáp: phần thưởng này hoàn toàn độc lập với các phần thưởng khác của hoc24 (nghĩa là bạn nhận thưởng tuần, thưởng tháng, thưởng quý CTV rồi nhận luôn giải này cũng được luôn).

 

- Hỏi: sao có sự bất công trong giải thưởng giữa CTV và thành viên thường như vậy?

 Đáp: đó không gọi là bất công. Đó chính xác là sự công bằng.

 

- Hỏi: hình thức trao thưởng là gì?

Đáp: thẻ cào điện thoại, only. Chuyển khoản ngân hàng rất rắc rối (trời nghĩ cảnh ra bốc số ngân hàng chờ 60ph đến lượt giao dịch rồi chuyển cho 3-4 tài khoản đã thấy đầu bốc khói rồi)

 

- Hỏi: event này diễn ra đến khi nào?

Đáp: không chắc chắn, nhưng có thể khẳng định là không ngắn hơn 1 năm.

 

- Hỏi: nếu 1 bạn CTV nhận thưởng xong, rồi tạo 1 acc clone cày giải thưởng thành viên thường thì sao?

Đáp: bạn đó sẽ bị loại vĩnh viễn khỏi cuộc chơi. Gì chứ các mem ở box Toán này mình quen mặt lắm, từ loại câu hỏi hay trả lời đến thói quen trình bày lời giải.

 

- Hỏi: nếu 1 bạn thành viên thường tạo clone?

Đáp: thành viên thường sẽ được ưu ái hơn. CTV bị cấm vĩnh viễn nếu vi phạm, thành viên thường mình chỉ cấm trong vòng 100 năm thôi.

 

- Hỏi: vậy mục đích thực sự đằng sau event này là gì?

Đáp: hỗ trợ các bạn có thêm vài ngàn chơi Tết, đây là mục đích thật.

 

Nào, xách bàn phím lên và bắt đầu thôi các bạn.

À, từ ngày mai, bây giờ cứ nghỉ ngơi và thư giãn đi.

 

Nhiều bạn có vẻ thắc mắc về cái nhóm, chu kì?

Hiểu thế này: bình thường 1 tháng có 4 tuần (tạm coi vậy), nhưng 4 tuần thì dài quá (mọi người nhận thưởng ít đi), nên mình rút ngắn xuống 3 tuần cho nhanh nhận thưởng. Mà theo vốn từ của mình thì không biết người ta gọi 1 vòng thời gian dài 3 tuần là gì, nên mình tạm đặt cho nó 1 cái tên (để đỡ lặp lại)

Tương tự là 1 vòng 3.3=9 tuần, chả biết nó tên là gì, nên đặt đại 1 cái tên.

Hiểu đơn giản: 3 tuần tổng kết thưởng 1 lần. Trong 9 tuần 1 người chỉ được nhận thưởng 1 lần.

Nguyễn Thị Minh Anh
Nguyễn Thị Minh Anh 11 tháng 1 lúc 22:14

Em chào cô giáo /thầy giáo ạ! Phiền cô/thầy giải giúp e bài toán ạ,e nghĩ ko ra ạ và mong cô/thầy rep tin nhắn của e ạ,e có một số thắc mắc ạ!E cảm ơn ạ!

Bình luận (0)
Sigma
Sigma CTV 11 tháng 1 lúc 22:31

Event này hay quá ạ. Ước gì mình cũng được vài ngàn tiền chơi Tết :D

Bình luận (0)
Mr. Đăng Khoa (61)
Mr. Đăng Khoa (61) 12 tháng 1 lúc 11:35

Làm sao để cộng điểm SP và GP vậy ?

Và điểm GP và SP nghĩa là gì ?

Ai là người làm cho mình cộng điểm SP và GP ?

Bình luận (0)
Quoc Tran Anh Le

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form: 

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

Hi vọng chuyên mục đầu tiên của chuỗi cuộc thi sẽ mang lại niềm vui và trải nghiệm thú vị cho các bạn. Những câu hỏi được chọn sẽ khả năng cao được đưa lên chuyên mục Câu hỏi hay. Tuy nhiên, với mục đích hỏi bài và trao đổi bài tập, các bạn hãy gửi câu hỏi lên hoc24 và cùng cộng đồng giải nhé!

-------------------------------------------------------------------

[Toán.C2 _ 10.1.2021] 

Người biên soạn câu hỏi: No name

Cho x, y, z > 0 thỏa mãn \(x^2+y^2+z^2+2xyz=1\). Tìm max:

P = xy + yz + zx - xyz.

[Toán.C3_10.1.2021]

Người biên soạn câu hỏi: Võ Phan Phương Ngọc

Cho tập hợp A = {-1,-2,...,-n}. Với mỗi tập con khác rỗng của A, chúng ta lập tích của các phần tử trong tập đó. Hỏi tổng của tất cả các tích thu được bằng bao nhiêu?

------------------------------------------------------------------

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Sigma
Sigma CTV 10 tháng 1 lúc 19:02

Vì C2 mình gửi nên mình làm câu 3:

Gọi S(n) là tổng tất cả các tích thu được.

Ta chứng minh bằng quy nạp rằng S(n) = -1 với mọi giá trị của n là số tự nhiên khác 0.

Thật vây, ta có S(1) = -1

Giả sử ta đã có S(n) = -1.

Ta cần chứng minh S(n + 1) = -1.

Ta thấy sau khi thêm tập hợp A = {-1; -2;,,,; -n} một phần tử -(n + 1), tập hợp A tăng thêm số tập hợp con bằng số tập hợp con của tập hợp A lúc đầu.

Do đó: \(S\left(n+1\right)-S\left(n\right)=S\left(n\right).\left[-\left(n+1\right)\right]-\left(n+1\right)=n+1-n-1=0\Rightarrow S\left(n+1\right)=S\left(n\right)=-1\).

Vậy ta có đpcm.

 

Bình luận (5)
Nguyễn Văn Đạt
Nguyễn Văn Đạt 10 tháng 1 lúc 22:11

Toán C.2 :

Ta có : \(P=xy+yz+zx-xyz\Leftrightarrow2P=2.\left(xy+yz+zx\right)-2xyz\)

\(=2.\left(xy+yz+zx\right)+x^2+y^2+z^2-1\)

\(=\left(x+y+z\right)^2-1\)

Vì : \(x^2+y^2+z^2+2xyz=1\)

\(\Rightarrow z^2+2xyz=1-x^2-y^2\)

\(\Rightarrow z^2+2xyz+x^2y^2=1-x^2-y^2+x^2y^2\)

\(\Rightarrow\left(z+xy\right)^2=\left(1-x^2\right)\left(1-y^2\right)\le\left(\dfrac{2-x^2-y^2}{2}\right)^2\)

\(\Rightarrow z+xy\le\dfrac{2-x^2-y^2}{2}\Rightarrow z\le\dfrac{2-x^2-y^2-2xy}{2}=\dfrac{2-\left(x+y\right)^2}{2}\)

Có : \(\left(x+y-1\right)^2\ge0\)

\(\Leftrightarrow\left(x+y\right)^2-2.\left(x+y\right)+1\ge0\)

\(\Leftrightarrow x+y\le\dfrac{\left(x+y\right)^2+1}{2}\)

\(\Leftrightarrow x+y+z\le\dfrac{\left(x+y\right)^2+1}{2}+\dfrac{2-\left(x+y\right)^2}{2}=\dfrac{3}{2}\)

\(\Rightarrow\left(x+y+z\right)^2-1\le\dfrac{5}{4}\) 

\(\Rightarrow2P\le\dfrac{5}{4}\Rightarrow P\le\dfrac{5}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{2}\)

Bình luận (5)
Lê Huỳnh Tú
Lê Huỳnh Tú 10 tháng 1 lúc 23:26

E ms học code nên e hay tìm các trang toán để lập code giải ạ. Ad có thể xem giúp e bài code này dc k ạ

#include<iostream> using namespace std; int main() {int n; cin >> n;int tong = 0, tich = 1, a[n];for(int i = 0; i <= n - 1; i ++) a[i] = -(i + 1);for(int i = 1; i <= n; i ++) {for(int j = 0; j <= n - i; j ++) {tich = 1;for(int k = j; k <= k + i - 1; k ++) {tich = tich * a[j];}tong = tong + tich;}}cout << tong;return 0;}
Bình luận (3)
Quoc Tran Anh Le

Trong thời gian cuộc thi Toán Tiếng Anh VEMC đang được chuẩn bị để mang đến những trải nghiệm tốt nhất cho người tham gia, mình xin được đăng một số câu hỏi hay trong bất kì các môn ngẫu nhiên để cho thành viên cộng đồng hoc24 có cơ hội được thử sức chính mình. Tuy nhiên do vốn câu hỏi của mình hạn chế nên mình cần sự giúp đỡ của cộng đồng. Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form: 

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

Hi vọng chuyên mục đầu tiên của chuỗi cuộc thi sẽ mang lại niềm vui và trải nghiệm thú vị cho các bạn. Bây giờ, hãy cùng thử câu hỏi đầu tiên của chuyên mục.

-------------------------------------------------------------------------------------------------

[Toán.C1 _ 7.1.2021] 

Người biên soạn câu hỏi: Quoc Tran Anh Le

Tổng quát cho bđt Iran 1996:

Cho x, y, z là các số thực không âm thỏa mãn không có hai số nào đồng thời bằng 0. k là tham số, k > 0. CMR:

\(\left(xy+yz+zx\right)\left(\dfrac{1}{\left(kx+y\right)^2}+\dfrac{1}{\left(ky+z\right)^2}+\dfrac{1}{\left(kz+x\right)^2}\right)\ge\dfrac{9}{\left(k+1\right)^2}\)

-----------------------------------------------------------------------------------------------

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Sigma
Sigma CTV 8 tháng 1 lúc 10:04

Giờ mới biết bđt Iran 1996. Có cả tổng quát nữa :v

Bình luận (8)
tthnew
tthnew 10 tháng 1 lúc 17:46

Câu này em có đăng rồi thì phải.

Bình luận (2)
Trần Bình Phương
Trần Bình Phương 11 tháng 1 lúc 12:39

hông biết tự chịu

Bình luận (0)
nguyen thi vang
nguyen thi vang 4 tháng 1 lúc 22:12

\(\left\{{}\begin{matrix}x^2+2y^2=3\\x+y=m+1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[\left(m+1\right)-y\right]^2+2y^2=3\\x=\left(m+1\right)-y\end{matrix}\right.\)  <=>\(\left\{{}\begin{matrix}\left(m+1\right)^2-2\left(m+1\right)y+y^2+2y^2=3\left(1\right)\\x=\left(m+1\right)-y\end{matrix}\right.\)

Hệ PT có nghiệm duy nhất <=> (1) có nghiệm duy nhất <=>\(\Delta'=0\) 

<=> \(\left(m+1\right)^2-3\left[\left(m+1\right)^2-3\right]=0\)

<=> \(9-2\left(m+1\right)^2=0\)

<=> \(\left(m+1\right)^2=\dfrac{9}{2}\)

<=> \(\left[{}\begin{matrix}m+1=\dfrac{3\sqrt{2}}{2}\\m+1=-\dfrac{3\sqrt{2}}{2}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}m=\dfrac{3\sqrt{2}-2}{2}\\m=\dfrac{-3\sqrt{2}-2}{2}\end{matrix}\right.\)

 

Bình luận (0)
Akai Haruma
Akai Haruma Giáo viên 4 tháng 1 lúc 23:56

Lời giải:

Ta sẽ đi CM đẳng thức tổng quát:

\((C^1_{2n})^2-(C^2_{2n})^2+(C^3_{2n})^2-....+(C^{2n-1}_{2n})^2-(C^{2n}_{2n})^2=C^n_{2n}+1\) với $n$ lẻ.

Theo nhị thức Newton ta có:

\((x^2-1)^{2n}=C^0_{2n}-C^1_{2n}x^2+C^2_{2n}x^4-....-C^n_{2n}x^{2n}+...+C^{2n}_{2n}x^{4n}\). Trong này, hệ số của $x^{2n}$ là $-C^n_{2n}$

Tiếp tục sử dụng nhị thức Newton:

\((x^2-1)^{2n}=(x+1)^{2n}(x-1)^{2n}=(C^0_{2n}+C^1_{2n}+C^2_{2n}x^2+...+C^{2n}_{2n}x^{2n})(C^0_{2n}x^{2n}-C^1_{2n}x^{2n-1}+C^2_{2n}x^{2n-2}-...+C^{2n}_{2n})\). Trong này, hệ số của $x^{2n}$ là

\((C^0_{2n})^2-(C^1_{2n})^2+(C^2_{2n})^2-.....+(C^{2n}_{2n})^2\)

Do đó:

\(-C^n_{2n}=(C^0_{2n})^2-(C^1_{2n})^2+(C^2_{2n})^2-.....+(C^{2n}_{2n})^2\)

\(\Leftrightarrow -C^n_{2n}=1-(C^1_{2n})^2+(C^2_{2n})^2-.....+(C^{2n}_{2n})^2\)

\(\Leftrightarrow (C^1_{2n})^2-(C^2_{2n})^2+...-(C^2_{2n})^2=1+C^n_{2n}\) 

Thay $n=1011$ ta có đpcm.

Bình luận (0)
Loading...