Từ các chữ số 1, 5, 6, 7 có thể lập được bao nhiêu chữ số tự nhiên có 4 chữ số (không nhất thiết phải khác nhau)?
324.256.248.124.Hướng dẫn giải:Gọi số cần tìm có dạng abcd với (a, b, c, d) ∈ A = {1, 5, 6, 7}.
Vì số cần tìm có 4 chữ số không nhất thiết khác nhau nên:
a được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
b được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
c được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
d được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
Như vậy, ta có 4.4.4.4 = 256 số cần tìm.