Bài tập cuối chương V

Bài 1 (SGK Cánh Diều trang 20)

Hướng dẫn giải

a) Số cách xếp 20 học sinh theo một hàng dọc là: \(20!\) (cách xếp). Vậy ta chọn đáp án B.

b) Số cách chọn ra 3 học sinh từ một lớp có 40 học sinh là: \(C_{40}^3\) (cách chọn). Vậy ta chọn đáp án D.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2 (SGK Cánh Diều trang 20)

Hướng dẫn giải

Kết luận: Từ sơ đồ cây, ta thấy bạn Dương có 12 cách chọn một bộ quần áo và một đôi giày.

 

(Trả lời bởi Hà Quang Minh)
Thảo luận (2)

Bài 3 (SGK Cánh Diều trang 20)

Hướng dẫn giải

Cách 1:

TH1: 2 điểm thuộc a và 1 điểm thuộc b

Số cách chọn 2 điểm thuộc đường thẳng a là \(C_3^2\) (cách chọn)

Số cách chọn 1 điểm thuộc đường thẳng b là: \(C_4^1\) (cách chọn)

=> Số tam giác tạo thành là: \(C_3^2 . C_4^1 = 12\)

TH2: 2 điểm thuộc b và 1 điểm thuộc a

Số cách chọn 2 điểm thuộc đường thẳng b là \(C_4^2\) (cách chọn)

Số cách chọn 1 điểm thuộc đường thẳng a là: \(C_3^1\) (cách chọn)

=> Số tam giác tạo thành là: \(C_4^2 + C_3^1 = 18\)

Vậy có tất cả 12 + 18 = 30 tam giác.

Cách 2:

Số cách chọn 3 điểm thuộc đường thẳng a là: \(C_3^3\) (cách chọn)

Số cách chọn 3 điểm thuộc đường thẳng b là: \(C_4^3\) (cách chọn)

Số cách chọn 3 điểm bất kì trong 7 điểm đã cho là: \(C_7^3\) (cách chọn)

Số cách chọn 3 điểm không thẳng hàng trong 7 điểm đã cho là: \(C_7^3 - C_4^3 - C_3^3 = 30\) (cách chọn)

Vậy số tam giác có thể có là : 30 (tam giác)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 4 (SGK Cánh Diều trang 20)

Hướng dẫn giải

Số cách chọn 2 đường thằng song song trong 6 đường thằng song song là: \(C_6^2\) (cách chọn)

Số cách chọn 2 đường thằng song song trong 8 đường thằng song song cùng vuông góc với 6 đường thằng song song ban đầu là: \(C_8^2\) (cách chọn)

Áp dụng quy tắc nhân, ta có số hình chữ nhật có thể tạo thành  là: \(C_8^2.C_6^2 = 420\) ( hình chữ nhật)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 5 (SGK Cánh Diều trang 20)

Hướng dẫn giải

a) \({\left( {4y - 1} \right)^4} = {\left[ {4y + \left( { - 1} \right)} \right]^4} = 256{y^4} - 256{y^3} + 96{y^2} - 16y + 1\)

b) \({\left( {3x + 4y} \right)^5} = 243{x^5} + 1620{x^4}y + 4320{x^3}{y^2} + 5760{x^2}{y^3} + 3840x{y^4} + 1024{y^5}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 6 (SGK Cánh Diều trang 20)

Hướng dẫn giải

+) Số cách chọn 4 kí tự đầu tiên là: \(A_{10}^4\) (cách chọn)

+) Số cách chọn 2 kí tự tiếp theo là: \(C_{26}^1.C_{26}^1\) (cách chọn)

+) Số cách chọn 1 kí tự tiếp theo là: \(C_{26}^1\) (cách chọn)

+) Số cách chọn 1 kí tự cuối cùng là: \(C_{10}^1\) (cách chọn)

+) Áp dụng quy tắc nhân, ta có số mật khẩu có thể tạo thành là:

\(A_{10}^4.C_{26}^1.C_{26}^1.C_{26}^1.C_{10}^1\) ( mật khẩu)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 7 (SGK Cánh Diều trang 20)

Hướng dẫn giải

+) Số cách chọn ra 2 bạn nam bất kì từ 22 bạn nam là: \(C_{22}^2\) (cách chọn)

+) Số cách chọn ra 2 bạn nữ bất kì từ 17 bạn nữ là: \(C_{17}^2\) (cách chọn)

+) Số cách sắp xếp thứ tự thi đấu của 4 bạn là: \(4!\) (cách xếp)

+) Áp dụng quy tắc nhân, ta có số cách lập một đội thi đấu là: \(C_{22}^2.C_{17}^2.4!\) (cách lập)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 8 (SGK Cánh Diều trang 20)

Hướng dẫn giải

+) Tổng số máy tính phù hợp là : \(4 + 5 + 7 = 16\) (máy tính)

+) Số cách chọn 2 máy tính từ 16 máy tính phù hợp là: \(C_{16}^2 = 120\) (cách chọn)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)