Bài 25. Hai mặt phẳng vuông góc

Giải mục 1 trang 44, 45 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

Vì hai đường thẳng a, a' cùng vuông góc với (P), hai đường thẳng b, b' cùng vuông góc với (Q) nên a // a',  b // b'

Vậy (a,b) = (a', b')

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Giải mục 1 trang 44, 45 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

Góc giữa hai mặt phẳng

+) bằng 00 khi trùng nhau

+) khác 00 khi giao nhau

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Giải mục 1 trang 44, 45 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

loading...

\(\left. \begin{array}{l}\left( {SAC} \right) \cap \left( {SBD} \right) = SO\\\left( {SAC} \right):AC \bot SO = \left\{ O \right\}\\\left( {SBD} \right):BD \bot SO = \left\{ O \right\}\end{array} \right\} \Rightarrow \left( {\left( {SAC} \right),\left( {SBD} \right)} \right) = \left( {AC,BD} \right) = \widehat {AOB}\)

+) Nếu \(\left( {SAC} \right) \bot \left( {SBD} \right) \Rightarrow \widehat {AOB} = {90^0} \Rightarrow AC \bot BD\)

Mà ABCD là hình chữ nhật nên ABCD là hình vuông.

+) Nếu ABCD là hình vuông \( \Rightarrow AC \bot BD \Rightarrow \widehat {AOB} = {90^0}\)

\( \Rightarrow \left( {\left( {SAC} \right),\left( {SBD} \right)} \right) = {90^0} \Rightarrow \left( {SAC} \right) \bot \left( {SBD} \right)\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Giải mục 1 trang 44, 45 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

a) \(\left. \begin{array}{l}a \bot \left( P \right)\\b \subset \left( P \right)\end{array} \right\} \Rightarrow a \bot b \Rightarrow \left( {a,b} \right) = {90^0}\)

b) Gọi \(\left( P \right) \cap \left( Q \right) = \Delta \)

\(\begin{array}{l}a \bot \Delta \left( {a \bot \left( P \right)} \right)\\b \bot \Delta \left( {b \bot \left( Q \right)} \right)\\ \Rightarrow \left( {\left( P \right),\left( Q \right)} \right) = \left( {a,b} \right) = {90^0}\end{array}\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Giải mục 2 trang 45, 46 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

tham khảo:

Trong một phòng, mặt sàn và các mặt tường đều vuông góc với nhau. Khi cánh cửa được đóng lại, thì mặt cửa cũng vuông góc với cả mặt sàn và mặt tường, nên đường thẳng nối bán lề của cánh cửa và cạnh của phòng sẽ là đường thẳng vuông góc với sàn nhà.

Trong quá trình đóng - mở cánh cửa, bán lề của cánh cửa vẫn cố định với mặt tường, nên đường thẳng nối bán lề của cánh cửa và cạnh của phòng vẫn là đường thẳng vuông góc với sàn nhà. Từ đó suy ra, trong quá trình đóng - mở, cánh cửa luôn vuông góc với sàn nhà.

(Trả lời bởi Bùi Nguyên Khải)
Thảo luận (1)

Giải mục 3 trang 46, 47 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

a) \(\left. \begin{array}{l}\left( P \right) \cap \left( Q \right) = \Delta \\\left( P \right):a \bot \Delta \\\left( Q \right):b \bot \Delta \end{array} \right\} \Rightarrow \left( {\left( P \right),\left( Q \right)} \right) = \left( {a,b} \right)\)

Mà \(\left( P \right) \bot \left( Q \right) \Rightarrow \left( {\left( P \right),\left( Q \right)} \right) = {90^0} \Rightarrow \left( {a,b} \right) = {90^0}\)

b) \(\left( {a,b} \right) = {90^0} \Rightarrow a \bot b,a \bot \Delta ,b \cap \Delta  \Rightarrow a \bot \left( Q \right)\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Giải mục 3 trang 46, 47 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

a) Vì O là một điểm thuộc a là giao tuyến của hai mặt phẳng (P), (Q) và a' là đường thẳng qua O và vuông góc với (R).

Theo nhận xét trang 46 thì a' có nằm trong các mặt phẳng (P), (Q).

b) Vì a' có nằm trong các mặt phẳng (P), (Q) nên a’ là giao tuyến của hai mặt phẳng (P), (Q) do đó a trùng a' (do a cũng là giao tuyến của hai mặt phẳng (P), (Q)).

c) a vuông góc với (R) do a trùng a’ và a’ vuông góc với (R).

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Giải mục 3 trang 46, 47 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

loading...

a) Từ ví dụ 3b ta có AB’, AC’ cùng đi qua A và vuông góc với SC

\( \Rightarrow SC \bot \left( {AB'C'D'} \right),SC \subset \left( {SAC} \right) \Rightarrow \left( {AB'C'D'} \right) \bot \left( {SAC} \right)\)

Ta có \(SA \bot \left( {ABCD} \right),SA \subset \left( {SAC} \right) \Rightarrow \left( {ABCD} \right) \bot \left( {SAC} \right)\)

Do đó các mặt phẳng (AB'C'D') và (ABCD) cùng vuông góc với (SAC).

b) Vì (AB'C'D') và (ABCD) cùng vuông góc với (SAC) nên giao tuyến của hai mặt phẳng (AB'C'D') và (ABCD) vuông góc với (SAC)

Vậy giao tuyển của hai mặt phẳng (AB'C'D') và (ABCD) là đường thẳng đi qua A, nằm trong mặt phẳng (ABCD) và vuông góc với AC.

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Giải mục 4 trang 47, 48 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

a) Theo tài liệu nói trên, góc xOy trong hình nên có số đo từ 100° đến 105°

b) Vì các tia Ox, Oy được vẽ tương ứng trên mặt ghế, lưng ghế đồng thời vuông góc với giao tuyến a của mặt ghế và lưng ghế nên góc giữa lưng ghế và mặt ghế là góc giữa Ox và Oy mà góc xOy có số đo từ 100° đến 105°

Do đó nếu thiết kế theo hướng dẫn đó thì góc giữa mặt phẳng chứa mặt ghế và mặt phẳng chứa lưng ghế có thể nhận số đo 750 đến 800

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Giải mục 4 trang 47, 48 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

a) Xét tam giác ABC có AB = AC => tam giác ABC cân tại A mà M là trung điểm BC

=> \(AM \bot BC\) (1)

\(\begin{array}{l}SA \bot BC\left( {SA \bot \left( {ABCD} \right)} \right)\\ \Rightarrow BC \bot \left( {SAM} \right);SM \subset \left( {SAM} \right) \Rightarrow BC \bot SM\,\,\,\left( 2 \right)\end{array}\)

Từ (1), (2) ta có \(\widehat {SMA}\) là một góc phẳng của góc nhị diện [S, BC, A].

b) Xét tam giác ABC cân tại A có

\(\widehat {BAC} = {120^0} \Rightarrow \widehat {ACB} = {30^0}\)

\(\sin \widehat {ACB} = \frac{{AM}}{{AC}} \Leftrightarrow \tan {30^0} = \frac{{AM}}{a} \Leftrightarrow AM = \frac{a}{{\sqrt 3 }}\)

\(\tan \widehat {SMA} = \frac{{SA}}{{AM}} = \frac{a}{{2\sqrt 3 }}:\frac{a}{{\sqrt 3 }} = \frac{1}{2} \Rightarrow \widehat {SMA} = \arctan \frac{1}{2}\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)