Đối với cánh cửa như trong Hình 7.10, khi đóng – mở cánh cửa, ta coi mép dưới BC của cánh cửa luôn sát sàn nhà (khe hở không đáng kể).
Đối với cánh cửa như trong Hình 7.10, khi đóng – mở cánh cửa, ta coi mép dưới BC của cánh cửa luôn sát sàn nhà (khe hở không đáng kể).
Nếu đường thẳng Δ và mặt phẳng (P) vuông góc với nhau thì chúng có cắt nhau hay không?
Thảo luận (1)Hướng dẫn giảinếu đường thẳng Δ và mặt phẳng (P) vuông góc với nhau thì chúng có cắt nhau
(Trả lời bởi Bùi Nguyên Khải)
Gấp tấm bìa cứng hình chữ nhật sao cho nếp gấp chia tấm bia thành hai hình chữ nhật, sau đó đặt nó lên mặt bàn như Hình 7.11.
a) Bằng cách trên, ta tạo được đường thẳng AB vuông góc với hai đường thẳng nào thuộc mặt bàn?
b) Trên mặt bàn, qua điểm A kẻ một đường thẳng a tuỳ ý. Dùng ê ke, hãy kiểm tra trên mô hình xem AB có vuông góc với a hay không.
Thảo luận (1)Hướng dẫn giải
Nếu một đường thẳng vuông góc với hai cạnh của một tam giác thì đường thẳng đó có vuông góc với các cạnh còn lại hay không?
Thảo luận (1)Hướng dẫn giảiđường thẳng đó có vuông góc với cạnh còn lại của tam giác
(Trả lời bởi Nguyễn Lê Phước Thịnh)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, SA = SC và SB = SD (H.7.14). Chứng minh rằng SO ⊥ (ABCD).
Thảo luận (1)Hướng dẫn giải+) Xét tam giác SAC có SA = SC \( \Rightarrow \) SAC là tam giác cân mà SO là trung tuyến
\( \Rightarrow \) SO \( \bot \) AC.
Xét tam giác SBD có SB = SD \( \Rightarrow \) SBD là tam giác cân mà SO là trung tuyến
\( \Rightarrow \) SO \( \bot \) BD.
+) Ta có SO \( \bot \) AC; SO \( \bot \) BD; AC \( \cap \) BD tại O \( \Rightarrow \) SO \( \bot \) (ABCD).
(Trả lời bởi Hà Quang Minh)
Khi làm cột treo quần áo, ta có thể tạo hai thanh đế thẳng đặt dưới sàn nhà và dựng cột treo vuông góc với hai thanh đế đó (H.7.15). Hãy giải thích vì sao bằng cách đó ta có được cột treo vuông góc với sàn nhà.
Thảo luận (1)Hướng dẫn giảiTa coi hai thanh đế thẳng đặt dưới dàn nhà là 2 đường thẳng cắt nhau và sàn nhà là 1 mặt phẳng.
Vì hai thanh đế thẳng đặt dưới sàn nhà và dựng cột treo vuông góc với hai thanh đế đó, hai thanh đế đó cắt nhau và nằm trên mặt phẳng là sàn nhà nên cột treo vuông góc với sàn nhà.
(Trả lời bởi Quoc Tran Anh Le)
Cho điểm O và đường thẳng \(\Delta \) không đi qua O. Gọi d là đường thẳng đi qua O và song song với \(\Delta \). Xét hai mặt phẳng phân biệt tuỳ ý (P) và (Q) cùng chứa d. Trong các mặt phẳng (P), (Q) tương ứng kẻ các đường thẳng a, b cùng đi qua O và vuông góc với d (H.7.16). Giải thích vì sao mp(a, b) đi qua O và vuông góc với \(\Delta \).
Thảo luận (1)Hướng dẫn giải\(\left. \begin{array}{l}a \bot d\\d//\Delta \end{array} \right\} \Rightarrow \Delta \bot a\)
\(\left. \begin{array}{l}b \bot d\\d//\Delta \end{array} \right\} \Rightarrow \Delta \bot b\)
Mà \(a \cap b = \left\{ O \right\}\) \( \Rightarrow \) mp(a, b) đi qua O và vuông góc với \(\Delta \).
(Trả lời bởi Quoc Tran Anh Le)
Cho mặt phẳng (P) và điểm O. Trong mặt phẳng (P), lấy hai đường thẳng cắt nhau a, b tuỳ ý. Gọi \(\left( \alpha \right),\left( \beta \right)\) là các mặt phẳng qua O và tương ứng vuông góc với a, b (H.7.19).
a) Giải thích vì sao hai mặt phẳng \(\left( \alpha \right),\left( \beta \right)\) cắt nhau theo một đường thẳng đi qua O.
b) Nêu nhận xét về mối quan hệ giữa \(\Delta \) và (P).
Thảo luận (1)Hướng dẫn giảia) Vì \(\left( \alpha \right),\left( \beta \right)\) là các mặt phẳng qua O và giao 2 mặt phẳng là 1 đường thẳng nên hai mặt phẳng \(\left( \alpha \right),\left( \beta \right)\) cắt nhau theo một đường thẳng đi qua O.
b) Gọi \(\Delta \) là giao tuyến của 2 \(\left( \alpha \right),\left( \beta \right)\)
\(\left. \begin{array}{l}a \bot \left( \alpha \right)\\\Delta \subset \left( \alpha \right)\end{array} \right\} \Rightarrow a \bot \Delta \)
\(\left. \begin{array}{l}b \bot \left( \beta \right)\\\Delta \subset \left( \beta \right)\end{array} \right\} \Rightarrow b \bot \Delta \)
Mà \(a \cap b = \left\{ I \right\} \Rightarrow \Delta \bot \left( P \right)\)
(Trả lời bởi Quoc Tran Anh Le)
Cho ba điểm phân biệt A, B, C sao cho các đường thẳng AB và AC cùng vuông góc với một mặt phẳng (P). Chứng minh rằng ba điểm A, B, C thẳng hàng.
Thảo luận (1)Hướng dẫn giảiTHAM KHẢO:
Vì AB và AC cùng vuông góc với một mặt phẳng (P) nên AB trùng AC
⇒⇒ A, B, C thẳng hàng.
(Trả lời bởi Bùi Nguyên Khải)
Cho đường thẳng a vuông góc với mặt phẳng (P) và song song với đường thẳng b. Lấy một đường thẳng m bất kì thuộc mặt phẳng (P). Tính (b, m) và từ đó rút ra mối quan hệ giữa b và (P).
Thảo luận (1)Hướng dẫn giải\(\left. \begin{array}{l}a \bot \left( P \right)\\m \subset \left( P \right)\end{array} \right\} \Rightarrow a \bot m \Rightarrow \left( {a,m} \right) = {90^0}\)
a // b \( \Rightarrow \left( {a,m} \right) = \left( {b,m} \right) = {90^0}\) mà đường thẳng m bất kì thuộc mặt phẳng (P)
\( \Rightarrow \) b \( \bot \) (P).
(Trả lời bởi Quoc Tran Anh Le)